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(Goals of this lecture

Understand joint, marginal, and conditional
porobability distributions

Understand expectations of functions of a random
variable

Understand how Monte Carlo methods allow us to
approximate expectations

Goal for the subsequent exercise: understand how
to Implement basic Monte Carlo inference methods



Simple example: discrete probability

Red bin Blue bin




Simple example: discrete probability

"First | pick a bin, then | pick a single fruit from the bin”

p(red bin) = 2/5 p(blue bin) = 3/5
p(applelred) = 2/8  p(applelblue) = 3/4




Simple example: discrete probability

"First | pick a bin, then | pick a single fruit from the bin”

Easy question: what is the probability | pick the red bin?

o(red bin) = 2/5
p(apple|red) = 2/8

o(blue bin) = 3/5
p(applelblue) = 3/4




Simple example: discrete probability

"First | pick a bin, then | pick a single fruit from the bin”

Easy question: If | first pick the red bin, what is the
orobability | pick an orange?

po(red bin) = 2/5
p(apple|red) = 2/8

o(blue bin) = 3/5
p(applelblue) = 3/4




Simple example: discrete probability

"First | pick a bin, then | pick a single fruit from the bin”

Less easy question: \What is the overall probability of
picking an apple?

po(red bin) = 2/5
p(apple|red) = 2/8

o(blue bin) = 3/5
p(applelblue) = 3/4




Simple example: discrete probability

"First | pick a bin, then | pick a single fruit from the bin”

Hard question: If | pick an orange, what is the probability
that | picked the blue bin?

po(red bin) = 2/5
p(apple|red) = 2/8

o(blue bin) = 3/5
p(applelblue) = 3/4




What is inference”

* The "hard question” requires reasoning backwards in our
generative model

* Our generative model specifies these probabilities explicitly:
» A “marginal” probability p(bin)
» A “conditional” probability p(fruit | bin)
» A “joint” probability p(fruit, bin)

* How can we answer guestions about different conditional or
marginal probabilities?

» p(fruit): “what is the overall probability of picking an orange®”

» p(bin|fruit): “what is the probability | picked the blue bin,
given | picked an orange?”




Rules of probability

We just need two basic rules of probability.

- Sum rule:

p(y)=) p(y,x) p(x)= Zp(y,X)
b y

- Product rule:

p(y,x)=p(y[x)p(x)=p(x|y)p(y)

* [These rules define the relationship between
marginal, joint, and conditional distributions.



Bayes Rule

Bayes' rule relates two conditional probabilities:

p(x1y) = p(y |)p(x)/p(y)

Posterior Likelihood Prior




Mini—exercise

ZP(XD’) = 77

Use the sum and product rules!



Simple example: discrete probability

“First | pick a bin, then | pick a single fruit from the bin”

USE THE SUM RULE: What is the overall probability of
picking an apple?

p(apple) = p(applelred)p(red) + p(applelblue)p(blue)

= 2/18 x 2/5 + 3/4 x 3/5

= 0.55
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Simple example: discrete probability

“First | pick a bin, then | pick a single fruit from the bin”

USE BAYES’ RULE: If | pick an orange, what is the
orobability that | picked the blue bin?

p(orangel|blue)p(blue)
p(orange)

1/4 x 3/5
6/8 x2/5 + 1/4 x 3/5

1/3 C0O
2099|119
V00) (000

p(bluelorange)




Continuous probability



The normal distribution

p(x|u,o)

—(x—u)’¢

p(x|u,o) = exp
T



A simple continuous example

 Measure the temperature of some water using an
iInexact thermometer

* [he actual water temperature x is somewhere near
room temperature of 22°; we record an estimate y.

x ~ Normal(22,10)
y|x ~ Normal(x, 1)

Easy question: whatis p(y | x = 25) ?

Hard question: whatis p(x | y = 25)?



Rules of probabillity: continuous

* Forreal-valued x, the sum rule becomes an integral

p(y) = f p(y,x)dx

 Bayes' rule:

p(xly) = p(ylx)p(x)  p(ylx)p(x)

p(y) - fp(y,x)dx




Integration is harder than addition!

_ p()p(y = 25|x)

Bayes' rule: p(x|y = 25)
p(y = 25)
Sum rule, in the B B B
denominator: p(y = 25) —JP(X)P()’ = 25|x)dx

In general this integral is intractable, and we can
only evaluate up to a normalizing constant



Monte Carlo inference



General problem:

- ) )
<{ p(x [y) = p(y [:)p(x)/p(¥)
it | | | A

|—Posterior |—Likelihood |—Prior

 Qur datais given by y
* Our generative model specities the prior and likelihood

 We are interested in answering questions about the
posterior distribution of p(x | y)



General problem:

colb x \
pCx |y) = p(y [x)p(:)/p(y)
V. | | | /

|—Posterior |—Likelihood |—Prior

* Typically we are not trying to compute a probability
density function for p(x | y) as our end goal

* |nstead, we want to compute expected values of some
function f(x) under the posterior distribution



EXpectation

e Discrete and continuous:

e Conditional on another random variable:

2 fly) = Zp zly) f



Key Monte Carlo identity

 We can approximate expectations using samples
drawn from a distribution p. It we want to compute

we can approximate it with a finite set of points
sampled from p(x) using

Ef] ~ 3 £za)

n=1

which becomes exact as N approaches infinity.



How do we draw samples?

o Simple, well-known distributions: samplers exist (for
the moment take as given)

e \We will look at:

1. Build samplers tor complicated distributions out of
samplers for simple distributions compositionally

2. Rejection sampling
3. Likelihood weighting

4. Markov chain Monte Carlo



Ancestral sampling from a model

* |n our example with estimating the water temperature,
suppose we already know how to sample from a
normal distribution.

x ~ Normal(22,10)

y|x ~ Normal(x, 1)

We can sample y by literally simulating from the
generative process: we first sample a “true”
temperature x, and then we sample the observed y.

* This draws a sample from the joint distribution p(x, y).



Samples from the joint distribution
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Conditioning via rejection

 What if we want to sample from a conditional
distribution” The simplest form is via rejection.

* Use the ancestral sampling procedure to simulate
from the generative process, draw a sample of x
and a sample of y. These are drawn together from
the joint distribution p(x, y).

» To estimate the posterior p(x | y = 25), we say that
X 1S a sample from the posterior it its corresponding
value y = 25.

- Question: is this a good idea?



Conditioning via rejection
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Black bar shows measurement at y = 25.
How many of these samples from the joint have y =257



Conditioning via importance sampling

* One option is to sidestep sampling from the
posterior p(x | y = 3) entirely, and draw from some
oroposal distribution g(x) instead.

* |nstead of computing an expectation with respect
to p(x|y), we compute an expectation with respect

to g(x):
() L / f(z)p(zly)d

Z/f p(z|y) (x)

p(zly)

4:q(azi) f( ) ( )




Conditioning via importance sampling

* Define an “importance weight” W(x) = p;i}'f;)

. Then, with z; ~ q(z)

1 N

Ep(olo) | (@)] = Eq) f@W (@) % 5 > f (@)W (@:)

1=1

* EXxpectations now computed using weighted
samples from g(x), instead of unweighted samples

from p(x|y)



Conditioning via importance sampling

* Typically, can only evaluate W(x) up to a constant
(but this is not a problem):

) — p(xily) () — p(zi, y)
W (z;) 1) (25) En

* Approximation:




Conditioning via importance sampling

 We already have very simple proposal distribution
we know how to sample from: the prior p(x).

e The a
samp
both t

gorithm then resembles the rejection
INg algorithm, except instead of sampling

ne latent variables and the observed

variables, we only sample the latent variables

e Then,

instead of a "hard” rejection step, we use the

values of the latent variables and the data to assign

“soft”

weights to the sampled values.



Likelihood weighting schematic
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Draw a sample of x from the prior



Likelihood weighting schematic
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What does p(y|x) look like for this sampled x ?



Likelihood weighting schematic
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What does p(y|x) look like for this sampled x ?



Likelihood weighting schematic
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What does p(y|x) look like for this sampled x ?



Likelihood weighting schematic
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Compute p(y|x) for all of our x drawn from the prior



Likelihood weighting schematic
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for a representation of the posterior



Conditioning via MCMC

 Problem: Likelihood weighting degrades poorly as the
dimension of the latent variables increases, unless we
have a very well-chosen proposal distribution g(x).

* An alternative: Markov chain Monte Carlo (MCMC)
methods draw samples from a target distribution by
performing a biased random walk over the space of the
latent variables x.

e |dea: create a Markov chain such that the sequence of
states Xo, X1, X2, ... are samples from p(x | y)

p($n|$n—1)




Conditioning via MCMC

« MCMC also uses a proposal distribution, but this proposal
distribution makes local changes to the latent variables x.
The proposal g(x' | x) defines a conditional distribution
over x' given a current value x.

e Jypical choice: add small amount of Gaussian noise

 We use the proposal and the joint density to define an
‘acceptance ratio”

A(x — ') = min (1, r

 With probability A we "move” state with the new value X,
otherwise we stay at x.



Measurement y

MCMC schematic
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The (unnormalized) joint distribution p(x,y)
IS shown as a dashed line



MCMC schematic

MCMC initialization
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Initialize arbitrarily (e.g. with a sample from the prior)



MCMC schematic

First MCMC step
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Propose a local move on x from a transition distribution



Measurement y
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1 MCMC iteration
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Here, we proposed a point in a region of
higher probability density, and accepted



MCMC schematic

10 MCMC iterations
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Continue: propose a local move, and accept or reject.
At first, this will look like a stochastic search algorithm!



MCMC schematic

100 MCMC iterations
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MCMC schematic

200 MCMC iterations
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MCMC schematic
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Helptul diagnostic: a “trace plot” of the path of the sampled
values, as the number of MCMC iterations increases



MCMC schematic
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NOWw: exercises

 Part one: a model much like the model we just looked at,
Gaussian data with a latent Gaussian distributed mean

A. implement likelihood weighting for this model

B. this is one of the very few continuous models where
exact inference Is possible. Do the math, and check if

your sampler is correct!

- Part two: seven scientists are performing an experiment to
estimate the value of a particular physical constant. Most
of them find similar results, but a few differ by surprisingly
much. Do | trust all these scientists equally”? What is the
‘real” value” Write an MCMC sampler to find out!




