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• Understand joint, marginal, and conditional 
probability distributions 

• Understand expectations of functions of a random 
variable 

• Understand how Monte Carlo methods allow us to 
approximate expectations 

• Goal for the subsequent exercise: understand how 
to implement basic Monte Carlo inference methods

Goals of this lecture



Simple example: discrete probability

Red bin Blue bin



Simple example: discrete probability

p(apple|red) = 2/8 p(apple|blue) = 3/4
p(red bin) = 2/5 p(blue bin) = 3/5

“First I pick a bin, then I pick a single fruit from the bin”



Simple example: discrete probability

p(apple|red) = 2/8

p(apple|blue) = 3/4

p(red bin) = 2/5

p(blue bin) = 3/5

Easy question: what is the probability I pick the red bin?

“First I pick a bin, then I pick a single fruit from the bin”



Simple example: discrete probability

p(apple|red) = 2/8

p(apple|blue) = 3/4

p(red bin) = 2/5

p(blue bin) = 3/5

Easy question: If I first pick the red bin, what is the 
probability I pick an orange?

“First I pick a bin, then I pick a single fruit from the bin”



Simple example: discrete probability

p(apple|red) = 2/8

p(apple|blue) = 3/4

p(red bin) = 2/5

p(blue bin) = 3/5

Less easy question: What is the overall probability of 
picking an apple?

“First I pick a bin, then I pick a single fruit from the bin”



Simple example: discrete probability

p(apple|red) = 2/8

p(apple|blue) = 3/4

p(red bin) = 2/5

p(blue bin) = 3/5

Hard question: If I pick an orange, what is the probability 
that I picked the blue bin?

“First I pick a bin, then I pick a single fruit from the bin”



• The “hard question” requires reasoning backwards in our 
generative model 

• Our generative model specifies these probabilities explicitly: 
‣ A “marginal” probability p(bin) 
‣ A “conditional” probability p(fruit | bin) 
‣ A “joint” probability p(fruit, bin) 

• How can we answer questions about different conditional or 
marginal probabilities? 
‣ p(fruit): “what is the overall probability of picking an orange?” 
‣ p(bin|fruit): “what is the probability I picked the blue bin, 

given I picked an orange?”

What is inference?



We just need two basic rules of probability. 

• Sum rule: 

• Product rule:"

!

• These rules define the relationship between 
marginal, joint, and conditional distributions.

Rules of probability



 Bayes’ rule relates two conditional probabilities:

Bayes’ Rule

Posterior Likelihood Prior



Mini–exercise

X

x

p(x |y) = ???

Use the sum and product rules!



Simple example: discrete probability

USE THE SUM RULE: What is the overall probability of 
picking an apple?

“First I pick a bin, then I pick a single fruit from the bin”

p(apple) = p(apple|red)p(red) + p(apple|blue)p(blue)
=        2/8     x    2/5    +          3/4     x    3/5
= 0.55



Simple example: discrete probability

USE BAYES’ RULE: If I pick an orange, what is the 
probability that I picked the blue bin?

“First I pick a bin, then I pick a single fruit from the bin”

p(blue|orange) =

=  

= 1/3

p(orange|blue)p(blue)
p(orange)

        1/4     x    3/5
    6/8 x 2/5  +  1/4 x 3/5



Continuous probability
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• Measure the temperature of some water using an 
inexact thermometer 

• The actual water temperature x is somewhere near 
room temperature of 22°; we record an estimate y. 

!

Easy question: what is p(y | x = 25) ? 

Hard question: what is p(x | y = 25) ?

A simple continuous example

x ⇠ Normal(22, 10)
y |x ⇠ Normal(x , 1)



• For real-valued x, the sum rule becomes an integral: 

!

!

• Bayes’ rule:

Rules of probability: continuous

p(y) =
Z

p(y , x )dx

p(x |y) = p(y |x )p(x )
p(y)

=
p(y |x )p(x )R

p(y , x )dx



Integration is harder than addition!

In general this integral is intractable, and we can 
only evaluate up to a normalizing constant

Bayes’ rule:

Sum rule, in the 
denominator: p(y = 25) =

Z
p(x)p(y = 25|x)dx

p(x |y = 25) =
p(x)p(y = 25|x)

p(y = 25)



Monte Carlo inference



• Our data is given by y 

• Our generative model specifies the prior and likelihood 

• We are interested in answering questions about the 
posterior distribution of p(x | y)

General problem:

Posterior Likelihood Prior



• Typically we are not trying to compute a probability 
density function for p(x | y) as our end goal 

• Instead, we want to compute expected values of some 
function f(x) under the posterior distribution

General problem:

Posterior Likelihood Prior



• Discrete and continuous: 

!

!

!

• Conditional on another random variable:

Expectation

1.2. Probability Theory 19

that the probability of x falling in an infinitesimal volume δx containing the point x
is given by p(x)δx. This multivariate probability density must satisfy

p(x) ! 0 (1.29)∫
p(x) dx = 1 (1.30)

in which the integral is taken over the whole of x space. We can also consider joint
probability distributions over a combination of discrete and continuous variables.

Note that if x is a discrete variable, then p(x) is sometimes called a probability
mass function because it can be regarded as a set of ‘probability masses’ concentrated
at the allowed values of x.

The sum and product rules of probability, as well as Bayes’ theorem, apply
equally to the case of probability densities, or to combinations of discrete and con-
tinuous variables. For instance, if x and y are two real variables, then the sum and
product rules take the form

p(x) =
∫

p(x, y) dy (1.31)

p(x, y) = p(y|x)p(x). (1.32)

A formal justification of the sum and product rules for continuous variables (Feller,
1966) requires a branch of mathematics called measure theory and lies outside the
scope of this book. Its validity can be seen informally, however, by dividing each
real variable into intervals of width ∆ and considering the discrete probability dis-
tribution over these intervals. Taking the limit ∆ → 0 then turns sums into integrals
and gives the desired result.

1.2.2 Expectations and covariances
One of the most important operations involving probabilities is that of finding

weighted averages of functions. The average value of some function f(x) under a
probability distribution p(x) is called the expectation of f(x) and will be denoted by
E[f ]. For a discrete distribution, it is given by

E[f ] =
∑

x

p(x)f(x) (1.33)

so that the average is weighted by the relative probabilities of the different values
of x. In the case of continuous variables, expectations are expressed in terms of an
integration with respect to the corresponding probability density

E[f ] =
∫

p(x)f(x) dx. (1.34)

In either case, if we are given a finite number N of points drawn from the probability
distribution or probability density, then the expectation can be approximated as a

1.2. Probability Theory 19

that the probability of x falling in an infinitesimal volume δx containing the point x
is given by p(x)δx. This multivariate probability density must satisfy

p(x) ! 0 (1.29)∫
p(x) dx = 1 (1.30)

in which the integral is taken over the whole of x space. We can also consider joint
probability distributions over a combination of discrete and continuous variables.

Note that if x is a discrete variable, then p(x) is sometimes called a probability
mass function because it can be regarded as a set of ‘probability masses’ concentrated
at the allowed values of x.

The sum and product rules of probability, as well as Bayes’ theorem, apply
equally to the case of probability densities, or to combinations of discrete and con-
tinuous variables. For instance, if x and y are two real variables, then the sum and
product rules take the form

p(x) =
∫

p(x, y) dy (1.31)

p(x, y) = p(y|x)p(x). (1.32)

A formal justification of the sum and product rules for continuous variables (Feller,
1966) requires a branch of mathematics called measure theory and lies outside the
scope of this book. Its validity can be seen informally, however, by dividing each
real variable into intervals of width ∆ and considering the discrete probability dis-
tribution over these intervals. Taking the limit ∆ → 0 then turns sums into integrals
and gives the desired result.

1.2.2 Expectations and covariances
One of the most important operations involving probabilities is that of finding

weighted averages of functions. The average value of some function f(x) under a
probability distribution p(x) is called the expectation of f(x) and will be denoted by
E[f ]. For a discrete distribution, it is given by

E[f ] =
∑

x

p(x)f(x) (1.33)

so that the average is weighted by the relative probabilities of the different values
of x. In the case of continuous variables, expectations are expressed in terms of an
integration with respect to the corresponding probability density

E[f ] =
∫

p(x)f(x) dx. (1.34)

In either case, if we are given a finite number N of points drawn from the probability
distribution or probability density, then the expectation can be approximated as a

20 1. INTRODUCTION

finite sum over these points

E[f ] ≃ 1
N

N∑

n=1

f(xn). (1.35)

We shall make extensive use of this result when we discuss sampling methods in
Chapter 11. The approximation in (1.35) becomes exact in the limit N → ∞.

Sometimes we will be considering expectations of functions of several variables,
in which case we can use a subscript to indicate which variable is being averaged
over, so that for instance

Ex[f(x, y)] (1.36)

denotes the average of the function f(x, y) with respect to the distribution of x. Note
that Ex[f(x, y)] will be a function of y.

We can also consider a conditional expectation with respect to a conditional
distribution, so that

Ex[f |y] =
∑

x

p(x|y)f(x) (1.37)

with an analogous definition for continuous variables.
The variance of f(x) is defined by

var[f ] = E
[
(f(x) − E[f(x)])2

]
(1.38)

and provides a measure of how much variability there is in f(x) around its mean
value E[f(x)]. Expanding out the square, we see that the variance can also be written
in terms of the expectations of f(x) and f(x)2Exercise 1.5

var[f ] = E[f(x)2] − E[f(x)]2. (1.39)

In particular, we can consider the variance of the variable x itself, which is given by

var[x] = E[x2] − E[x]2. (1.40)

For two random variables x and y, the covariance is defined by

cov[x, y] = Ex,y [{x − E[x]} {y − E[y]}]
= Ex,y[xy] − E[x]E[y] (1.41)

which expresses the extent to which x and y vary together. If x and y are indepen-
dent, then their covariance vanishes.Exercise 1.6

In the case of two vectors of random variables x and y, the covariance is a matrix

cov[x,y] = Ex,y

[
{x − E[x]}{yT − E[yT]}

]

= Ex,y[xyT] − E[x]E[yT]. (1.42)

If we consider the covariance of the components of a vector x with each other, then
we use a slightly simpler notation cov[x] ≡ cov[x,x].



• We can approximate expectations using samples 
drawn from a distribution p. If we want to compute  
 
 
 
we can approximate it with a finite set of points 
sampled from p(x) using  
 
 
 
 
which becomes exact as N approaches infinity.

Key Monte Carlo identity
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• Simple, well-known distributions: samplers exist (for 
the moment take as given) 

• We will look at: 

1. Build samplers for complicated distributions out of 
samplers for simple distributions compositionally 

2. Rejection sampling 

3. Likelihood weighting 

4. Markov chain Monte Carlo

How do we draw samples?



• In our example with estimating the water temperature, 
suppose we already know how to sample from a 
normal distribution.  
 
 
 
We can sample y by literally simulating from the 
generative process: we first sample a “true” 
temperature x, and then we sample the observed y. 

• This draws a sample from the joint distribution p(x, y).

Ancestral sampling from a model

x ⇠ Normal(22, 10)
y |x ⇠ Normal(x , 1)



Samples from the joint distribution



• What if we want to sample from a conditional 
distribution? The simplest form is via rejection. 

• Use the ancestral sampling procedure to simulate 
from the generative process, draw a sample of x 
and a sample of y. These are drawn together from 
the joint distribution p(x, y). 

• To estimate the posterior p(x | y = 25), we say that 
x is a sample from the posterior if its corresponding 
value y = 25. 

• Question: is this a good idea?

Conditioning via rejection



Conditioning via rejection

Black bar shows measurement at y = 25. 
How many of these samples from the joint have y = 25 ?



• One option is to sidestep sampling from the 
posterior p(x | y = 3) entirely, and draw from some 
proposal distribution q(x) instead. 

• Instead of computing an expectation with respect 
to p(x|y), we compute an expectation with respect 
to q(x):

Conditioning via importance sampling

E
p(x|y)[f(x)] =

Z
f(x)p(x|y)dx

=

Z
f(x)p(x|y)q(x)

q(x)
dx

= E
q(x)


f(x)

p(x|y)
q(x)

�



• Define an “importance weight” 

• Then, with  
 
 

• Expectations now computed using weighted 
samples from q(x), instead of unweighted samples 
from p(x|y)

Conditioning via importance sampling

W (x) =
p(x|y)
q(x)

xi ⇠ q(x)

E
p(x|y)[f(x)] = E

q(x) [f(x)W (x)] ⇡ 1

N

NX

i=1

f(x
i

)W (x
i

)



• Typically, can only evaluate W(x) up to a constant 
(but this is not a problem): 

!

!

• Approximation:

Conditioning via importance sampling

W (xi) =
p(xi|y)
q(xi)

w(xi) =
p(xi, y)

q(xi)

W (xi) ⇡
w(xi)PN
j=1 w(xj)

E
p(x|y)[f(x)] ⇡

NX

i=1

w(x
i

)
P

N

j=1 w(xj

)
f(x

i

)



• We already have very simple proposal distribution 
we know how to sample from: the prior p(x). 

• The algorithm then resembles the rejection 
sampling algorithm, except instead of sampling 
both the latent variables and the observed 
variables, we only sample the latent variables 

• Then, instead of a “hard” rejection step, we use the 
values of the latent variables and the data to assign 
“soft” weights to the sampled values.

Conditioning via importance sampling



Likelihood weighting schematic

Draw a sample of x from the prior



What does p(y|x) look like for this sampled x ?

Likelihood weighting schematic



What does p(y|x) look like for this sampled x ?

Likelihood weighting schematic



What does p(y|x) look like for this sampled x ?

Likelihood weighting schematic



Compute p(y|x) for all of our x drawn from the prior

Likelihood weighting schematic



Assign weights (vertical bars) to samples  
for a representation of the posterior

Likelihood weighting schematic



• Problem: Likelihood weighting degrades poorly as the 
dimension of the latent variables increases, unless we 
have a very well-chosen proposal distribution q(x). 

• An alternative: Markov chain Monte Carlo (MCMC) 
methods draw samples from a target distribution by 
performing a biased random walk over the space of the 
latent variables x. 

• Idea: create a Markov chain such that the sequence of 
states x0, x1, x2, … are samples from p(x | y)

Conditioning via MCMC

A Tutorial on Probabilistic Programming

(defquery hmm

[observations init-dist trans-dists obs-dists]

(predict

:states

(reduce

(fn [states obs]

(let [state (sample (get trans-dists

(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(defquery hmm

[ys init-dist trans-dists obs-dists]

(predict

:x

(reduce

(fn [xs y]

(let [x (sample (get trans-dists

(peek xs)))]

(observe (get obs-dists state) y)

(conj xs x)))

[(sample init-dist)]

ys)))

x0 x1 x2 x3 · · ·

y1 y2 y3

Figure 11: Square Lattice Ising Model

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

57

p(xn|xn�1)



• MCMC also uses a proposal distribution, but this proposal 
distribution makes local changes to the latent variables x. 
The proposal q(x' | x) defines a conditional distribution 
over x' given a current value x. 

• Typical choice: add small amount of Gaussian noise  

• We use the proposal and the joint density to define an 
“acceptance ratio”  
 

• With probability A we “move” state with the new value x’, 
otherwise we stay at x. 

Conditioning via MCMC

A(x ! x

0) = min

✓
1,

p(x0
, y)q(x|x0)

p(x, y)q(x0|x)

◆



The (unnormalized) joint distribution p(x,y)  
is shown as a dashed line

MCMC schematic



Initialize arbitrarily (e.g. with a sample from the prior)

MCMC schematic



Propose a local move on x from a transition distribution

MCMC schematic



Here, we proposed a point in a region of  
higher probability density, and accepted

MCMC schematic



Continue: propose a local move, and accept or reject. 
At first, this will look like a stochastic search algorithm!

MCMC schematic



MCMC schematic

Once in a high-density region, it will explore the space



MCMC schematic

Once in a high-density region, it will explore the space



MCMC schematic

Helpful diagnostic: a “trace plot” of the path of the sampled 
values, as the number of MCMC iterations increases



MCMC schematic

Histogram of trace plot, overlaid on prior probability density



• Part one: a model much like the model we just looked at, 
Gaussian data with a latent Gaussian distributed mean 

A. implement likelihood weighting for this model 

B. this is one of the very few continuous models where 
exact inference is possible. Do the math, and check if 
your sampler is correct! 

• Part two: seven scientists are performing an experiment to 
estimate the value of a particular physical constant. Most 
of them find similar results, but a few differ by surprisingly 
much. Do I trust all these scientists equally? What is the 
“real” value? Write an MCMC sampler to find out!

Now: exercises


