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Objectives For This Week
• Get you to  

• understand and write functional programs (T) 

• know Clojure 

• understand generative modeling (T) 

• understand inference and conditioning (T) 

• understand and write probabilistic programs (W) 

• know Anglican 

• Code up a project of your own and share it (Th/F) 

• https://bitbucket.org/probprog/anglican-examples



Schedule

https://goo.gl/SrNzPZ

Public Google Calendar



Objectives For Today
Get you to 

• Know what probabilistic program is and how it’s 
different to a normal program. 

• Understand how to write a probabilistic program and 
have the resources to get started if you want to. 

• Understand the literature at a very high level. 

• Know one way to roll your own state-of-the-art 
probabilistic programming system.



What is probabilistic 
programming?
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A Probabilistic Program
“Probabilistic programs are usual functional or 
imperative programs with two added constructs:  

(1) the ability to draw values at random from 
distributions, and  

(2) the ability to condition values of variables in a 
program via observations.”  

Gordon, Henzinger, Nori, and Rajamani  
“Probabilistic programming.” In Proceedings of On The Future of Software Engineering (2014).



Goals of the Field



Increase Productivity

Lines of Matlab/Java Code
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HPYP, [Teh 2006]

Object Tracking, [Neiswanger et al 2014]

Automata Induction [Pfau et al 2010]

Collapsed LDA

DP Conjugate Mixture



Commodify Inference

Language Representation / Abstraction Layer

Inference engines

Models / Simulators 

CARON ET AL.

This lack of consistency is shared by other models based on the Pólya urn construction (Zhu
et al., 2005; Ahmed and Xing, 2008; Blei and Frazier, 2011). Blei and Frazier (2011) provide a
detailed discussion on this issue and describe cases where one should or should not bother about it.

It is possible to define a slightly modified version of our model that is consistent under marginal-
isation, at the expense of an additional set of latent variables. This is described in Appendix C.

3.2 Stationary Models for Cluster Locations

To ensure we obtain a first-order stationary Pitman-Yor process mixture model, we also need to
satisfy (B). This can be easily achieved if for k 2 I(mt

t)

Uk,t ⇠
⇢

p (·|Uk,t�1) if k 2 I(mt
t�1)

H otherwise

where H is the invariant distribution of the Markov transition kernel p (·|·). In the time series
literature, many approaches are available to build such transition kernels based on copulas (Joe,
1997) or Gibbs sampling techniques (Pitt and Walker, 2005).

Combining the stationary Pitman-Yor and cluster locations models, we can summarize the full
model by the following Bayesian network in Figure 1. It can also be summarized using a Chinese
restaurant metaphor (see Figure 2).

Figure 1: A representation of the time-varying Pitman-Yor process mixture as a directed graphi-
cal model, representing conditional independencies between variables. All assignment
variables and observations at time t are denoted ct and zt, respectively.

3.3 Properties of the Models

Under the uniform deletion model, the number At =
P

im
t
i,t�1 of alive allocation variables at time

t can be written as

At =

t�1
X

j=1

n
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k=1

Xj,k
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Figure : From left to right: graphical models for a finite Gaussian mixture model
(GMM), a Bayesian GMM, and an infinite GMM
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Figure 1. Graphical model for LDA model

Lecture LDA

LDA is a hierarchical model used to model text documents. Each document is modeled as

a mixture of topics. Each topic is defined as a distribution over the words in the vocabulary.

Here, we will denote by K the number of topics in the model. We use D to indicate the

number of documents, M to denote the number of words in the vocabulary, and N

d
. to

denote the number of words in document d. We will assume that the words have been

translated to the set of integers {1, . . . , M} through the use of a static dictionary. This is

for convenience only and the integer mapping will contain no semantic information. The

generative model for the D documents can be thought of as sequentially drawing a topic

mixture ✓d for each document independently from a DirK(↵

~

1) distribution, where DirK(

~

�)

is a Dirichlet distribution over the K-dimensional simplex with parameters [�1, �2, . . . , �K ].

Each of K topics {�k}K
k=1 are drawn independently from DirM (�

~

1). Then, for each of the

i = 1 . . . N

d
. words in document d, an assignment variable z

d
i is drawn from Mult(✓

d
).

Conditional on the assignment variable z

d
i , word i in document d, denoted as w

d
i , is drawn

independently from Mult(�zd
i
). The graphical model for the process can be seen in Figure 1.

The model is parameterized by the vector valued parameters {✓d}D
d=1, and {�k}K

k=1, the

parameters {Z

d
i }d=1,...,D,i=1,...,Nd

.
, and the scalar positive parameters ↵ and �. The model

is formally written as:
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Success Stories

Graphical Models Factor Graphs

Factorie Infer.NETSTANBUGS



BUGS 

• Language restrictions 
• Bounded loops 
• No branching  

• Model class 
• Finite graphical models 

• Inference - sampling 
• Gibbs

16
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Algorithm 1 Gaussian unknown mean model in BUGS
model {

x ~ dnorm(a, 1/b)

for (i in 1:N) {

y[i] ~ dnorm(x, 1/c)

}

}

Algorithm 2 Gaussian unknown mean query in Anglican (Eqv. to BUGS model in Alg. 1)

(defquery unknown-mean

[ys a b c]

(let [x (sample (normal a (sqrt b)))

likelihood (normal x (sqrt c))]

(map (fn [y] (observe likelihood y)) ys)

(predict :x x)))

looks a lot like some kind of weird program. In fact, it is, particularly if you think about it
generatively. In fact, Algorithm 1 shows this model written in BUGS language (Plummer,
2003). In this program the variables N, a, b, c, and {yi}N

i=1

are assumed to have been defined
and bound to values before the model is “executed.”

As an aside note that the same model can be expressed in the family of more expressive
languages including. As an example consider the same model written in Anglican, Alg. ??.

but these both are just declarative denotations of something. In both cases, the BUGS
model and the Anglican query denote a conditional distribution, in this case of x conditioned
on the model structure and the value of observations y

1

and y
2

. As an aside, note that if we
wanted to do prediction we could simply specify another y

3

that is conditionally dependent
in the same way on x but not observed.

How we choose to run the program, i.e. to compute the denoted conditional distribution
is a big part of probabilistic programming. Options include source code analysis and pro-
gram transformations, interpretation to a dependency graph then running ‘stock’ samplers
on the same, or treating the program as exactly that at running it, often multiple times, in
such a way so as to arrive at a converging sequence of program runs (again, more on that
later).

We’ll touch very briefly on the former, however, in this paper we’ll largely punt on
it and point out that doing program transformations that, essentially, analytically derive
conditional distributions foremost requires not only an established, formal, and correct
language semantics but also the skills of a programming languages expert. And while doing
this is seems extremely attractive and is intellectually challenging in the extreme, we in
the machine learning community already understand that there are relatively few models in
which such total transformations are possible so we’ll graciously leave this to the discussion
in this paper and let the programming languages community develop and report on these
tools. When they do this will truly automate big parts of everyday statistical inference

8

A Tutorial on Probabilistic Programming

by recognizing that certain programs correspond to closed-form integrals. Note that there
can be transformations of complex models to graphical models in which computationally
e�cient inference can be performed, but we digress. More on this later.

FIXME – Write an example of the program transformation of a the BUGS program by
moving lines up...

For now, let’s examine how one might write an interpreter from a simple language like
BUGS to an actual graphical representation of the model denotation, and, further, how one
might implement a “generic” inference engine for computing the conditional distribution
specified by the model.

To start, every variable name to the left of a ⇠ denotes a random variable – and to
the right a distribution. There is another operator  which instantiates another variable
(again on the left) that is a deterministic function of values to its right.

Interpreting this kind of model then involves running a program to, in this case, build
a graphical model (for this model, Fig. 1). Note that in this quite simple example we don’t
have any deterministic variables, but, even in the general setting, these don’t cause trouble
in figuring out a way to interpret the program, just, potentially, how well the conditional
distribution denoted by the program can be characterized.

a b

c
x

y1y2

Figure 1: Graphical model for Gaussian unknown mean model

Now, given such a graphical structure, one can examine it and pattern match to, for
instance, per-vertex Gibbs operators for use in a global Gibbs sampling algorithm. As
this and programs allowed by the BUGS modeling language, describe directed graphical
models (and, in the case of many BUGS/JAGS packages will cause a compilation error
if you attempt to define a model with cycles) then you can compute the Markov blanket
for each node and attempt to pattern match it to an “e�cient” Gibbs operator for such
a node. In this case we might identify the Markov blanket of x as being all the variables
in the model and then, given the type of the variable (available, syntactically, from the
name of the of the random procedure, here dnorm). If each random procedure includes type
information in the form of its domain, a function that evaluates the density or distribution
of it’s output given its arguments, and, perhaps, whether or not it can form a conjugate
relationship with any other distributions, then, pattern matching on the graph can be used
to select amongst a bank of univariate (or, rather, single random variable – which might
not be univariate) samplers that apply to that particular pattern, and, in the case of Gibbs
kernels that require evaluating the probability of the variable at the node (like, for instance,

9

Spiegelhalter et al. "BUGS: Bayesian inference using Gibbs sampling, Version 0.50." Cambridge 1995.



STAN : Finite Dimensional Differentiable Distributions 

• Language restrictions 
• Bounded loops 
• No discrete random variables* 

• Model class 
• Finite dimensional differentiable distributions 

• Inference - sampling 
• Hamiltonian Monte Carlo  

• Reverse-mode automatic differentiation 
• Black box variational inference, etc.
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These languages include Anglican (Wood et al., 2014), Venture (Mansinghka et al.,
2014), and WebPPL (Goodman and Stuhlmüller, 2014).

14.1 Model Definition Syntax

The above systems make different trade-offs in terms of the models they can express
and the inference algorithms that the back end provides. In order to understand these
trade-offs, we compare the modeling and inference capabilities in a series of example
programs. To illustrate the basic model definition syntax in each system, we begin by
considering a simple one-dimensional linear dynamical system (LDS), with generative
model

x1 ⇠ Normal(0.0, 1.0) (153)
xt|xt�1 ⇠ Normal(a xt, q) for t = 2, . . . , T (154)
yt|xt ⇠ Normal(xt, 1.0) (155)

We assume that the parameters a and q are known, but specify them symbolically to
illustrate how their values can be passed to the model.

In our description

14.1.1 STAN

data {

int<lower=2> T;

real ys[T];

real a;

real q;

}

parameters {

real xs[T];

}

model {

xs[1] ~ normal(0.0, 1.0);

for (t in 2:T)

xs[t] ~ normal(a * xs[t - 1], q);

for (t in 1:T)

ys[t] ~ normal(xs[t], 1.0);

}

In Stan models are specified using an imperative syntax that minimally contains
three required blocks: data, parameters, and model. Figure 12 show these three
blocks for the 1-dimensional LDS. The data block defines the type signature of all
known variables and constants, whose values must be supplied to the back end prior
to inference. The parameters block defines type signatures for all unknown variables,

90
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(HMC) is one such approach. In HMC, we consider the joint distribution over all la-
tent random variables x in the target density as a real-valued potential energy function
U(x), with

⇡(x) =
1

Z
exp {�U(x)} . (72)

Hamiltonian Monte Carlo introduces auxiliary “momentum” variables p, with K(p) rep-
resenting the kinetic energy of the system. The momentum variables are typically
defined as from a zero-mean Gaussian with covariance M, noting that the dimension
of p is the same as the dimension of x (i.e., if x 2 RD, then also p 2 RD). This yields
a joint target distribution ⇡0

(x,p) given by

⇡0
(x,p) =

1

Z 0 exp{�U(x) � K(p)} (73)

=

1

Z 0 exp

⇢
�U(x) +

1

2

p

>
M

�1
p

�
. (74)

The total energy of the system is defined by a function known as the Hamiltonian,

H(x,p) = U(x) +K(p). (75)

By way of physical analogy, we can consider the energy “landscape” defined by U(x)

(with lower-energy states having higher probability), with the kinetic energy pushing our
sampler along this surface. If we consider this “movement” of the sampler over some
time ⌧ , the time evolution of the system is given by the differential equations

@x

@⌧
=

@H

@p
= M

�1
p (76)

@p

@⌧
= �@H

@x
= �r

x

U(x). (77)

Considering the flow from some initial point x(0),p(0) to x(⌧),p(⌧), Hamiltonian sys-
tems are known to preserve total energy H(·), preserve volume, and be time reversible.
Solving the differential equation can be accomplished via any numerical integration
technique which is volume-preserving and time-reversible; ideally it would (at least ap-
proximately) also preserve total energy. Since holding total energy fixed also holds the
joint density fixed, MCMC proposals which integrate the Hamiltonian for some distance
⌧ make steps which keep the joint density fixed and thus (were it not for the numeric
integration error) would produce an acceptance rate of 1. The volume-preserving prop-
erty means that it is unnecessary to compute any change-of-variables Jacobian term
in the acceptance ratio.

MCMC with Hamiltonian dynamics then proceeds by alternately sampling the mo-
mentum variables, and then simulating the forward dynamics. Since ⇡0

(x,p) factorizes
into a product of independent distributions on x and p, the momentum variables p are

52

STAN Development Team "Stan: A C++ Library for Probability and Sampling." 2014.
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Factorie and Infer.NET 
• Language restrictions 

•  Finite compositions of factors 
• Model class 

• Finite factor graphs  
• Inference - message passing, etc.
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Figure 5: Factor graph for the TrueSkill example.

Each approximating factor ˜fm is chosen to be an exponential family distribution of the
form

˜fm(x) =
1

Zm(⌘m)
hm(xm) exp(⌘m · um(x)), (55)

where ⌘m is the vector of natural parameters, which will be learned, and u(x) is the
vector of sufficient statistics. One of the properties of exponential family distributions is
that the product of two exponential family distributions, once normalized, is once again
an exponential family distribution. In other words

q(x;⌘) =
1

Zq(⌘)
h(x) exp(⌘ · u(x)), (56)

h(x) =
Y

m2U

hm(x), (57)

⌘ · u(x) =
X

m2U

⌘m · um(x), (58)

Zq(⌘) =

Z
dx h(x) exp[⌘ · u(x)]. (59)

A nice property of the expontial family distribution is that we can express the KL diver-
gence in equation 54 as

KL (⇡(x)kq(x;⌘)) = logZq(⌘) + ⌘ · E⇡(x)[u(x)] + const. (60)

48

TrueSkill CRF

Minka, Winn, Guiver, and Knowles "Infer .NET 2.4, Microsoft Research Cambridge." 2010. 
 . McCallum, Schultz, and Singh. “Factorie Probabilistic programming via imperatively defined factor graphs.“ NIPS 2009  

A TUTORIAL ON PROBABILISTIC PROGRAMMING

(defquery trueskill

"Simple TrueSkill example with 3 players and 3 matches"

[skill-prior perf-noise]

(let [skill-prior (normal 25.0 10.0)

perf-noise (sqrt 25.0)

alice-skill (sample skill-prior)

bob-skill (sample skill-prior)

cyd-skill (sample skill-prior)]

; rejection criterion: alice wins from bob
(observe (dirac (> (sample (normal alice-skill perf-noise))

(sample (normal bob-skill perf-noise))))

true)

; rejection criterion: bob wins from cyd
(observe (dirac (> (sample (normal bob-skill perf-noise))

(sample (normal cyd-skill perf-noise))))

true)

; predict: does cyd beat alice?
(predict :cyd-wins

(> (sample (normal cyd-skill perf-noise))

(sample (normal alice-skill perf-noise))))

Figure 5: Anglican program for the TrueSkill example.
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Figure 6: Factor graph for CRF.
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(defquery captcha 
 [image num-chars tol]
 (let [[w h] (size image)
       ;; sample random characters
       num-chars (sample 
                  (poisson num-chars))
       chars (repeatedly 
               num-chars sample-char)]
  ;; compare rendering to true image
  (map (fn [y z] 
         (observe (normal z tol) y)) 
       (reduce-dim image)
       (reduce-dim (render chars w h)))
  ;; predict captcha text
  {:text
   (map :symbol (sort-by :x chars))}))

Posterior Samples

CAPTCHA breaking
Generative ModelObservation

y
x

text image
Mansinghka,, Kulkarni, Perov, and Tenenbaum  

“Approximate Bayesian image interpretation using generative probabilistic graphics programs." NIPS (2013).



Perception / Inverse Graphics

22

Kulkarni, Kohli, Tenenbaum, Mansinghka  
"Picture: a probabilistic programming language for 

scene perception." CVPR (2015).

Mansinghka,, Kulkarni, Perov, and Tenenbaum.  
"Approximate Bayesian image interpretation using 

generative probabilistic graphics programs." NIPS (2013).

Observed
Image

Inferred
(reconstruction)

Inferred model 
re-rendered with 

novel poses

Inferred model 
re-rendered with 

novel lighting

Figure 3: Inference on representative faces using Picture: We
tested our approach on a held-out dataset of 2D image projections
of laser-scanned faces from [36]. Our short probabilistic program
is applicable to non-frontal faces and provides reasonable parses as
illustrated above using only general-purpose inference machinery.
For quantitative metrics, refer to section 4.1.

and informed samplers [19]. GPGP aimed to address the
main challenges of generative vision by representing visual
scenes as short probabilistic programs with random vari-
ables, and using a generic MCMC (single-site Metropolis-
Hastings) method for inference. However, due to modeling
limitations of earlier probabilistic programming languages,
and the inefficiency of the Metropolis-Hastings sampler,
GPGP was limited to working with low-dimensional scenes,
restricted shapes, and low levels of appearance variability.
Moreover, it did not support the integration of bottom-up
discriminative models such as deep neural networks [23, 25]
for data-driven proposal learning. Our current work extends
the GPGP framework in all of these directions, letting us
tackle a richer set of real-world 3D vision problems.

Picture is an imperative programming language, where
expressions can take on either deterministic or stochastic val-
ues. We use the transformational compilation technique [46]
to implement Picture, which is a general method of trans-
forming arbitrary programming languages into probabilistic
programming languages. Compared to earlier formulations
of GPGP, Picture is dynamically compiled at run-time (JIT-
compilation) instead of interpreting, making program execu-
tion much faster.

A Picture program f defines a stochastic procedure that
generates both a scene description and all other information
needed to render an approximation image IR for compari-
son with an observed image ID. The program f induces a
joint probability distribution on the program trace ⇢ = {⇢i},
the set of all random choices i needed to specify the scene
hypothesis S and render IR. Each random choice ⇢i can
belong to a familiar parametric or non-parametric family of
distributions, such as Multinomial, MvNormal, DiscreteU-
niform, Poisson, or Gaussian Process, but in being used to
specify the trace of a probabilistic graphics program, their

effects can be combined much more richly than is typical for
random variables in traditional statistical models.

Consider running the program in Figure 2 unconditionally
(without observed data): as different ⇢i’s are encountered
(for e.g. coeff ), random values are sampled w.r.t their under-
lying probability distribution and cached in the current state
of the inference engine. Program execution outputs an image
of a face with random shape, texture, camera and lighting
parameters. Given image data ID, inference in Picture pro-
grams amounts to iteratively sampling or evolving program
trace ⇢ to a high probability state while respecting constraints
imposed by the data (Figure 3). This constrained simulation
can be achieved by using the observe language construct
(see code in Figure 2), first proposed in Venture [32] and
also used in [35, 47].

2.1. Architecture
In this section, we will explain the essential architectural

components highlighted in Figure 1 (see Figure 4 for a sum-
mary of notation used).
Scene Language: The scene language is used to describe
2D/3D visual scenes as probabilistic code. Visual scenes
can be built out of several graphics primitives such as: de-
scription of 3D objects in the scene (e.g. mesh, z-map,
volumetric), one or more lights, textures, and the camera
information. It is important to note that scenes expressed
as probabilistic code are more general than parametric prior
density functions as is typical in generative vision models.
The probabilistic programs we demonstrate in this paper
embed ideas from computer-aided design (CAD) and non-
parametric Bayesian statistics[37] to express variability in
3D shapes.
Approximate Renderer (AR): Picture’s AR layer takes in
a scene representation trace S⇢ and tolerance variables X⇢,
and uses general-purpose graphics simulators (Blender[5]
and OpenGL) to render 3D scenes. The rendering tolerance
X⇢ defines a structured noise process over the rendering and
is useful for the following purposes: (a) to make automatic
inference more tractable or robust, analogous to simulated
annealing (e.g. global or local blur variables in GPGP [31]),
and (b) to soak up model mismatch between the true scene
rendering ID and the hypothesized rendering IR. Inspired by
the differentiable renderer[29], Picture also supports express-
ing AR’s entire graphics pipeline as Picture code, enabling
the language to express end-to-end differentiable generative
models.
Representation Layer (RL): To avoid the need for photo-
realistic rendering of complex scenes, which can be slow
and modeling-intensive, or for pixel-wise comparison of
hypothesized scenes and observed images, which can some-
times yield posteriors that are intractable for sampling-based
inference, the RL supports comparison of generated and ob-
served images in terms of a hierarchy of abstract features.

Figure 2: Four input images from our CAPTCHA corpus, along with the final results and conver-
gence trajectory of typical inference runs. The first row is a highly cluttered synthetic CAPTCHA
exhibiting extreme letter overlap. The second row is a CAPTCHA from TurboTax, the third row
is a CAPTCHA from AOL, and the fourth row shows an example where our system makes errors
on some runs. Our probabilistic graphics program did not originally support rotation, which was
needed for the AOL CAPTCHAs; adding it required only 1 additional line of probabilistic code. See
the main text for quantitative details, and supplemental material for the full corpus.

3 Generative Probabilistic Graphics in 2D for Reading Degraded Text.

We developed a probabilistic graphics program for reading short snippets of degraded text consisting
of arbitrary digits and letters. See Figure 2 for representative inputs and outputs. In this program,
the latent scene S = {Si} contains a bank of variables for each glyph, including whether a potential
letter is present or absent from the scene, what its spatial coordinates and size are, what its identity
is, and how it is rotated:
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0 otherwise
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y
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i < G

0 otherwise
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✓
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⇢
1/2✓
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✓
i < ✓
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0 otherwise

Our renderer rasterizes each letter independently, applies a spatial blur to each image, composites
the letters, and then blurs the result. We also applied global blur to the original training image
before applying the stochastic likelihood model on the blurred original and rendered images. The
stochastic likelihood model is a multivariate Gaussian whose mean is the blurry rendering; formally,
ID ⇠ N(IR;�). The control variables X = {Xj} for the renderer and likelihood consist of per-
letter Gaussian spatial blur bandwidths X

i
j ⇠ � · Beta(1, 2), a global image blur on the rendered

image X

blur rendered

⇠ � · Beta(1, 2), a global image blur on the original test image X

blur test

⇠
� · Beta(1, 2), and the standard deviation of the Gaussian likelihood � ⇠ Gamma(1, 1) (with �,
� and � set to favor small bandwidths). To make hard classification decisions, we use the sample
with lowest pixel reconstruction error from a set of 5 approximate posterior samples. We also
experimented with enabling enumerative (griddy) Gibbs sampling for uniform discrete variables
with 10% probability. The probabilistic code for this model is shown in Figure 4.

To assess the accuracy of our approach on adversarially obscured text, we developed a corpus con-
sisting of over 40 images from widely used websites such as TurboTax, E-Trade, and AOL, plus
additional challenging synthetic CAPTCHAs with high degrees of letter overlap and superimposed
distractors. Each source of text violates the underlying assumptions of our probabilistic graphics
program in different ways. TurboTax CAPTCHAs incorporate occlusions that break strokes within
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(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

(defm andreas [depth]

(let [andreas-location (pub-or-starbucks? 0.6)]

(if (> depth 0)

(let [noah-location (noah depth)]

(observe andreas-location noah-location)

noah-location)

(sample andreas-location)))))

9. Simulation Based Modeling

An alternative characterization of a probabilistic program can be considered, which focuses
purely on the generative simulation process. A deterministic (or “traditional”) program
performs some computation and then returns an output. A probabilistic programming
language augments the deterministic programming language with two constructs:

• sampling a random value according to some distribution; and

• conditioning on the value of an observed random variable.

The probabilistic program then defines a distribution over outputs, and returns some rep-
resentation of this distribution.

Informally, one can imagine “running” a probabilistic program as an operation similar
to running a deterministic program. Suppose we have some set of random primitives —
distributions such as the Gaussian, uniform, binomial, etc. — from which we can sample
new random values, or condition on observed values. In Anglican, we could draw a value
according to a standard normal distribution by calling (sample (normal 0 1)) and we
could condition on it taking the value 1.1 with (observe (normal 0 1) 1.1). In a single
execution of a probabilistic program, if we encounter a sample statement, we draw a new
random variable; if we encounter an observe statement, we can record the probability of
the value under the supplied distribution.

We can describe this process somewhat more precisely as follows. We suggest a separa-
tion between the deterministic program code P and the randomness introduced by sample

40
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cognitive process behavior

Want to meet up but phones are dead…

I prefer the pub. 
Where will Noah go? 

Simulate Noah: 
Noah prefers pub 

but will go wherever Andreas is 
Simulate Noah simulating Andreas: 

… 
-> both go to pub 
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Generating Design Suggestions under Tight Constraints with
Gradient-based Probabilistic Programming

Daniel Ritchie Sharon Lin Noah D. Goodman Pat Hanrahan

Stanford University

Figure 1: Physical realizations of stable structures generated by our system. To create these structures, we write programs that
generate random structures (e.g. a random tower or a randomly-perturbed arch), constrain the output of the program to be near
static equilibrium, and then sample from the constrained output space using Hamiltonian Monte Carlo.

Abstract

We present a system for generating suggestions from highly-constrained, continuous design spaces. We formulate
suggestion as sampling from a probability distribution; constraints are represented as factors that concentrate
probability mass around sub-manifolds of the design space. These sampling problems are intractable using typical
random walk MCMC techniques, so we adopt Hamiltonian Monte Carlo (HMC), a gradient-based MCMC method.
We implement HMC in a high-performance probabilistic programming language, and we evaluate its ability to
efficiently generate suggestions for two different, highly-constrained example applications: vector art coloring
and designing stable stacking structures.

1. Introduction

Considering multiple possibilities is critical in design. Ex-
posure to different examples facilitates creativity—for in-
stance, prototyping multiple alternatives can lead to better-
quality final designs [KDK14, DGK⇤10]. Exploring the
whole space of creative options seems to help people avoid
fixation and overcome their unconscious biases [JS91].
Computation can assist with this exploration by generating

suggestions: given a model of the design space, computers
can synthesize examples that their users might never have
thought of independently.

In computer graphics, probabilistic inference has become
popular for computer-aided suggestion in domains as diverse
as color selection and furniture layout [LRFH13,YYW⇤12].
In this framework, the user provides a model of the de-
sign space by expressing her preferences as soft constraints,
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Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.
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simulation constraint

Forward Sampling SOSMC-Controlled Sampling

Figure 3: SOSMC sampling from a random building complex
model with volume matching applied.

Figure 4: Using the object avoidance scoring function to make
gnarly trees grow around obstacles.

Figure 1 shows some examples of spaceships and trees sampled
according to this score function using SOSMC. Figure 3 applies
the same score function to encourage a building complex to take on
a crescent-like shape.

6.2 Object Avoidance

Volume matching allows an artist to specify what regions of space
a model should occupy; it can also be valuable to specify the space
a model should not occupy. For this control, the user provides a set
of objects with which the model should avoid contact. We rasterize
these objects onto a binary voxel grid V

avoid

. The object avoidance
score function s

avoid

is then

s

avoid

(r) =
Y

x2D

1{V
r

(x) " V

avoid

(x)}

where " is logical NAND. This function imposes a hard constraint:
it returns 0 if V

r

and V

avoid

have any mutually filled cells and 1
otherwise.

Figure 4 shows two examples of using object avoidance to generate
trees that avoid obstacles. On the left, the tree avoids a wall with
three protruding ledges; on the right, it grows through and around
the SIGGRAPH logo. These examples also use a weaker version of
the volume matching score function (� = 0.05) to encourage the
trees to grow to a tall, full shape.

6.3 Image Matching

It is also useful to specify projective properties of a model, such as
how it looks from a particular viewpoint or when lit from a particu-

Front View Top View

Figure 5: The image matching scoring function is used to control
the appearance of a building complex from a particular viewpoint.
(Left): The model as viewed from the target viewpoint. (Right): The
model viewed from above.

Target

Front View

Top View

Figure 6: Using image matching to control the appearance of
a spaceship’s front profile. The SOSMC-sampled results closely
match the target when viewed head on but exhibit a variety of struc-
tures when viewed from other angles.

lar angle. We implement this type of control through image-based
comparisons. If I

target

is a target binary image defined over domain
D, and I

r

is a rendering of the model described by trace r onto D,
then the image matching score function s

imatch

is

s

imatch

(r) = N (sim(I
r

, I

target

), 1,�)

sim(I1, I2) =

P
x2D W (x) · 1{I1(x) = I2(x)}P

x2D W (x)

where W is a ‘weight image’ defined over D. The weight image
allows users to draw strokes over parts of the image domain where
strict matching is more or less important. For the results shown in
this paper, W is uniform unless explicitly shown. As with volume
matching, � is 0.02 unless otherwise specified.

Figure 5 shows a use of the image matching scoring function to en-
force a target silhouette for a building complex when viewed from
a particular angle. Note that the generated model is still free to
exhibit random structure when viewed from other angles.

In Figure 6, we use image matching to control the profile of a space-
ship. The generated models bear strong similarity to the target im-
age when viewed from the front but are otherwise unconstrained,
revealing diverse structure when viewed from other angles.

Figure 7 shows another use of image matching: controlling the
shadows cast by toy blocks strewn about a floor. Here, we decrease
the score error tolerance by an order of magnitude (� = 0.002), use
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x ⇠ p(x)

x ⇠ p(x|y)
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(defquery gaussian-model [data]
  (let [x (sample (normal 1 (sqrt 5)))
        sigma (sqrt 2)]
    (map (fn [y] (observe (normal x sigma) y)) data)
    x))

Anglican By Example : Graphical Model

29

(def posterior-samples 
  (repeatedly 20000 #(sample posterior)))

(def posterior 
  ((conditional gaussian-model 
                :pgibbs 
                :number-of-particles 1000) dataset))

x|y ⇠ Normal(7.25, 0.91)

(def dataset [9 8]) y1 = 9, y2 = 8

x ⇠ Normal(1,

p
5)

yi|x ⇠ Normal(x,

p
2)

https://www.java.com/
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  (let [x (sample (normal 1 (sqrt 5)))
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    (map (fn [y] (observe (normal x sigma) y)) data)
    x))

Graphical Model
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(def posterior-samples 
  (repeatedly 20000 #(sample posterior)))

(def posterior 
  ((conditional gaussian-model 
                :pgibbs 
                :number-of-particles 1000) dataset))

x|y ⇠ Normal(7.25, 0.91)

(def dataset [9 8]) y1 = 9, y2 = 8

x ⇠ Normal(1,

p
5)

yi|x ⇠ Normal(x,

p
2)
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        sigma (sqrt 2)]
    (map (fn [y] (observe (normal x sigma) y)) data)
    x))
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31

(def posterior-samples 
  (repeatedly 20000 #(sample posterior)))

(def posterior 
  ((conditional gaussian-model 
                :pgibbs 
                :number-of-particles 1000) dataset))

x|y ⇠ Normal(7.25, 0.91)

(def dataset [9 8]) y1 = 9, y2 = 8

x ⇠ Normal(1,

p
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yi|x ⇠ Normal(x,

p
2)
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(defquery gaussian-model [data]
  (let [x (sample (normal 1 (sqrt 5)))
        sigma (sqrt 2)]
    (map (fn [y] (observe (normal x sigma) y)) data)
    x))
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(def posterior-samples 
  (repeatedly 20000 #(sample posterior)))

(def posterior 
  ((conditional gaussian-model 
                :pgibbs 
                :number-of-particles 1000) dataset))

x|y ⇠ Normal(7.25, 0.91)

(def dataset [9 8]) y1 = 9, y2 = 8

x ⇠ Normal(1,

p
5)

yi|x ⇠ Normal(x,

p
2)



(defquery gaussian-model [data]
  (let [x (sample (normal 1 (sqrt 5)))
        sigma (sqrt 2)]
    (map (fn [y] (observe (normal x sigma) y)) data)
    x))

Anglican : Syntax ≈ Clojure, Semantics ≠ Clojure
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(def posterior-samples 
  (repeatedly 20000 #(sample posterior)))

(def posterior 
  ((conditional gaussian-model 
                :pgibbs 
                :number-of-particles 1000) dataset))

x|y ⇠ Normal(7.25, 0.91)

(def dataset [9 8]) y1 = 9, y2 = 8

x ⇠ Normal(1,

p
5)

yi|x ⇠ Normal(x,

p
2)

https://www.java.com/
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(defquery sprinkler-bayes-net [sprinkler wet-grass]
  (let [is-cloudy (sample (flip 0.5))

        is-raining (cond (= is-cloudy true ) 
                         (sample (flip 0.8))
                         (= is-cloudy false) 
                         (sample (flip 0.2)))
        sprinkler-dist (cond (= is-cloudy true) 
                             (flip 0.1)
                             (= is-cloudy false) 
                             (flip 0.5))
        wet-grass-dist (cond 
                         (and (= sprinkler true) 
                              (= is-raining true))                                                         
                         (flip 0.99)
                         (and (= sprinkler false) 
                              (= is-raining false))
                         (flip 0.0)
                         (or  (= sprinkler true) 
                              (= is-raining true))
                         (flip 0.9))]
    (observe sprinkler-dist sprinkler)
    (observe wet-grass-dist wet-grass)

    is-raining))
                     



One Hidden Markov Model

A Tutorial on Probabilistic Programming

(defquery hmm

[observations init-dist trans-dists obs-dists]

(predict

:states

(reduce

(fn [states obs]

(let [state (sample (get trans-dists

(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(defquery hmm

[ys init-dist trans-dists obs-dists]

(predict

:x

(reduce

(fn [xs y]

(let [x (sample (get trans-dists

(peek xs)))]

(observe (get obs-dists state) y)

(conj xs x)))

[(sample init-dist)]

ys)))

x0 x1 x2 x3 · · ·

y1 y2 y3

Figure 11: Square Lattice Ising Model

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

57

(defquery hmm
  (let [init-dist (discrete [1 1 1])
        trans-dist (fn [s] 
                     (cond 
                       (= s 0) (discrete [0 1 1])
                       (= s 1) (discrete [0 0 1])
                       (= s 2) (dirac 2)))
        obs-dist (fn [s] (normal s 1))
        y-1 1
        y-2 1
        x-0 (sample init-dist)
        x-1 (sample (trans-dist x-0))
        x-2 (sample (trans-dist x-1))]
    
          (observe (obs-dist x-1) y-1)
          (observe (obs-dist x-2) y-2)
          [x-0 x-1 x-2])) 
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(defquery hmm

[observations init-dist trans-dists obs-dists]

(predict

:states

(reduce

(fn [states obs]

(let [state (sample (get trans-dists

(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(defquery hmm

[ys init-dist trans-dists obs-dists]

(predict

:x

(reduce

(fn [xs y]

(let [x (sample (get trans-dists

(peek xs)))]

(observe (get obs-dists state) y)

(conj xs x)))

[(sample init-dist)]

ys)))

x0 x1 x2 x3 · · ·

y1 y2 y3

Figure 11: Square Lattice Ising Model

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

57

(defquery hmm
  [ys init-dist trans-dists obs-dists]
  (reduce 
    (fn [xs y]
      (let [x (sample (get trans-dists (peek xs)))]
        (observe (get obs-dists x) y)
        (conj xs x)))
    [(sample init-dist)]
    ys))



New Primitives

0

1

1-pp

1-pp

2

1-pp

(defquery geometric [p]
  "geometric distribution"
  (let [dist (flip p)
        samp (loop [n 0]
               (if (sample dist)
                 n 
                 (recur (+ n 1))))]
    samp))



A Hard Inference Problem
(defquery md5-inverse [L md5str] 
    "conditional distribution of strings
     that map to the same MD5 hashed string"
    (let [mesg (sample (string-generative-model L))]
      (observe (dirac md5str) (md5 mesg))
      mesg)))
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The Gist
• Explore as many “traces” as possible, intelligently 

• Each trace contains all random choices made 
during the execution of a generative model 

• Compute trace “goodness” (probability) as side-effect 
• Combine weighted traces probabilistically coherently 
• Report projection of posterior over traces 

• If it’s going to be “hard,” let’s at least make it fast 
• First generation - interpreted 
• Second generation - compiled

40



Traces

(let [t-1 3
      x-1 (sample (discrete (repeat t-1 1)))] 
  (if (not= x-1 1) 
    (let [t-2 (+ x-1 7)
          x-2 (sample (poisson t-2))])))

x1 = 0

x1 = 1

x1 = 2

(discrete `(1 1 1))

(poisson 9)

(poisson 7) x2 = 0

x2 = 1

x2 = 2

...

x2 = 0

x2 = 1

x2 = 2

...



Goodness of Trace

(let [t-1 3
      x-1 (sample (discrete (repeat t-1 1)))] 
  (if (not= x-1 1) 
    (let [t-2 (+ x-1 7)
          x-2 (sample (poisson t-2))]
      (observe (gaussian x-2 0.0001) 1))))

x1 = 0

x1 = 1

x1 = 2

(discrete `(1 1 1))

(poisson 9)

(poisson 7) x2 = 0

x2 = 1

x2 = 2

...

x2 = 0

x2 = 1

x2 = 2

...

 (normpdf 1 1 0.0001)

 (normpdf 0 1 0.0001)

 (normpdf 2 1 0.0001)

 (normpdf 1 1 0.0001)

 (normpdf 2 1 0.0001)

 (normpdf 0 1 0.0001)



• Sequence of N observe’s 

• Sequence of M sample’s 

• Sequence of M sampled values 

• Conditioned on these sampled values the entire computation 
is deterministic

Trace

A Tutorial on Probabilistic Programming

according to a standard normal distribution by calling (sample (normal 0 1)) and we
could condition on it taking the value 1.1 with (observe (normal 0 1) 1.1). In a single
execution of a probabilistic program, if we encounter a sample statement, we draw a new
random variable; if we encounter an observe statement, we can record the probability of
the value under the supplied distribution.

We can describe this process somewhat more precisely as follows. We suggest a separa-
tion between the deterministic program code P and the randomness introduced by sample

by considering the probabilistic program to be executed in the context of some backend B,
and introduce the concept of a program execution trace which enumerates all random choices
made during the course of executing the program. Crucially, the probabilistic program ex-
ecution is completely deterministic given the value of the trace — that is, given a sequence
of sampled values x

1

, x
2

, . . . then the output of the probabilistic program is deterministic.
The backend B interacts with the program P as follows.

• We initialize by beginning execution of the program P.

• When execution of P encounters a sample statement, observe statement, or the end
of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a parameter
vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns control to P
which continues execution, providing this value as the output of sample.

– observe: P passes to B a tuple (g, �, y) consisting of a distribution g, a parameter
vector �, and a observed value y. Control is then returned to P, which continues
execution.

– If P has terminated, it returns a value z, which can be any arbitrary (determin-
istic) function of the program trace.

Suppose after a single execution of a probabilistic program in this manner, we encounter N
observe statements and M sample statements. This yields sequences of tuples {(gi, �i, yi)}Ni=1

corresponding to the observe statements, and {(fj , ✓j)}Mj=1

corresponding to the sample

statements, with the associated sequence of sampled values (i.e. the program execution
trace) {xj}Mj=1

. The probability of this program execution trace can be defined, up to an
unknown normalizing constant, as a product of all random choices x and all observed values
y, with

�(x) , p(x,y) =
NY

i=1

gi(yi|�i)
MY

j=1

fj(xj |✓j). (72)

Note that this ordering, as well as the cardinalities M and N , are not necessarily identical
across di↵erent runs of the program.

Obscured by the notation above is the dependency structure induced by the probabilistic
program P. Each parameter vector �i and ✓j are themselves deterministic functions of
(potentially) every previous random choice in the program. So too are gi and fj . Let ni

denote the total number of random values sampled prior to the ith observe statement and
the bold, subscripted value xj = x

1

⇥ · · · ⇥ xj denote a partial program execution trace

53

A Tutorial on Probabilistic Programming

according to a standard normal distribution by calling (sample (normal 0 1)) and we
could condition on it taking the value 1.1 with (observe (normal 0 1) 1.1). In a single
execution of a probabilistic program, if we encounter a sample statement, we draw a new
random variable; if we encounter an observe statement, we can record the probability of
the value under the supplied distribution.

We can describe this process somewhat more precisely as follows. We suggest a separa-
tion between the deterministic program code P and the randomness introduced by sample

by considering the probabilistic program to be executed in the context of some backend B,
and introduce the concept of a program execution trace which enumerates all random choices
made during the course of executing the program. Crucially, the probabilistic program ex-
ecution is completely deterministic given the value of the trace — that is, given a sequence
of sampled values x

1

, x
2

, . . . then the output of the probabilistic program is deterministic.
The backend B interacts with the program P as follows.

• We initialize by beginning execution of the program P.

• When execution of P encounters a sample statement, observe statement, or the end
of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a parameter
vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns control to P
which continues execution, providing this value as the output of sample.

– observe: P passes to B a tuple (g, �, y) consisting of a distribution g, a parameter
vector �, and a observed value y. Control is then returned to P, which continues
execution.

– If P has terminated, it returns a value z, which can be any arbitrary (determin-
istic) function of the program trace.

Suppose after a single execution of a probabilistic program in this manner, we encounter N
observe statements and M sample statements. This yields sequences of tuples {(gi, �i, yi)}Ni=1

corresponding to the observe statements, and {(fj , ✓j)}Mj=1

corresponding to the sample

statements, with the associated sequence of sampled values (i.e. the program execution
trace) {xj}Mj=1

. The probability of this program execution trace can be defined, up to an
unknown normalizing constant, as a product of all random choices x and all observed values
y, with

�(x) , p(x,y) =
NY

i=1

gi(yi|�i)
MY

j=1

fj(xj |✓j). (72)

Note that this ordering, as well as the cardinalities M and N , are not necessarily identical
across di↵erent runs of the program.

Obscured by the notation above is the dependency structure induced by the probabilistic
program P. Each parameter vector �i and ✓j are themselves deterministic functions of
(potentially) every previous random choice in the program. So too are gi and fj . Let ni

denote the total number of random values sampled prior to the ith observe statement and
the bold, subscripted value xj = x

1

⇥ · · · ⇥ xj denote a partial program execution trace

53

A Tutorial on Probabilistic Programming

according to a standard normal distribution by calling (sample (normal 0 1)) and we
could condition on it taking the value 1.1 with (observe (normal 0 1) 1.1). In a single
execution of a probabilistic program, if we encounter a sample statement, we draw a new
random variable; if we encounter an observe statement, we can record the probability of
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of the program, it yields control to the backend.
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execution.

– If P has terminated, it returns a value z, which can be any arbitrary (determin-
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Suppose after a single execution of a probabilistic program in this manner, we encounter N
observe statements and M sample statements. This yields sequences of tuples {(gi, �i, yi)}Ni=1

corresponding to the observe statements, and {(fj , ✓j)}Mj=1

corresponding to the sample

statements, with the associated sequence of sampled values (i.e. the program execution
trace) {xj}Mj=1

. The probability of this program execution trace can be defined, up to an
unknown normalizing constant, as a product of all random choices x and all observed values
y, with

�(x) , p(x,y) =
NY

i=1

gi(yi|�i)
MY

j=1

fj(xj |✓j). (72)

Note that this ordering, as well as the cardinalities M and N , are not necessarily identical
across di↵erent runs of the program.

Obscured by the notation above is the dependency structure induced by the probabilistic
program P. Each parameter vector �i and ✓j are themselves deterministic functions of
(potentially) every previous random choice in the program. So too are gi and fj . Let ni

denote the total number of random values sampled prior to the ith observe statement and
the bold, subscripted value xj = x

1

⇥ · · · ⇥ xj denote a partial program execution trace
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consisting of the first j sampled values (with x
0

⌘ ;). We can then rewrite Equation 72 in
a form which explicitly represents the dependency structure, as

�(x) = p(x,y) =
NY

i=1

g̃i(xni)

✓
yi

�����̃i(xni)

◆ MY

j=1

f̃j(xj�1

)

✓
xj

����✓̃j(xj�1

)

◆
. (73)

Here, each �̃i and ✓̃j are deterministic procedures which take partial program traces xni ,xj

and return parameter vectors �i and ✓j ; similarly g̃i and f̃j are deterministic functions which
return density functions gi and fj . These procedures correspond exactly to the incremental
executions of P above. Note that the functional forms of the distributions gi and fj are all
those of random primitives, and so by construction we can sample from any fj(·|✓j) and
evaluate any gi(yi|�i) — once the parameters are known.

The normalized posterior probability distribution over program traces can be defined as

⇡(x) , p(x|y) =
�(x)

Z
, Z = p(y) =

Z
�(x)dx (74)

The normalizing constant Z is found by integrating over all possible program execution
traces.

The program output z is defined as a deterministic function of the trace; that is, given
a program execution trace x, we define z = Q(x). This allows us, in theory, to use the
posterior distribution over traces ⇡(x) to characterize the distribution over z given the
observations y; for example, the posterior mean can be found by

E[z] = E[Q(x)] =

Z
Q(x)p(x|y)dx =

Z
Q(x)⇡(x)dx. (75)

It should be clear that this characterization of a probabilistic program allows us to define
models literally as simulations, with the random elements controlled by sample and observe

statements. The generative procedure uses sample to create random variables; synthetic
data sets could be created simply by replacing any observe statement with sample, without
changing the unnormalized distribution p(x,y).

10.1 A first simulation-based inference engine

We will look at a a first, simple simulation-based inference engine based on likelihood
weighting. This will not be an acceptable approach to performing inference, but is easily
understood and provides intuition for more complex approaches. We approximate expecta-
tions of the output values z as weighted sum over sampled values, with

Ê[Q(x)] =
KX

k=1

WkQ(xk). (76)

A very simple way of generating trace samples xk is to run K independent copies of the
program P, yielding K traces, each sampled according to some sequence of Mk di↵erent
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Obscured by the notation above is the dependency structure induced by the prob-
abilistic program P . Each parameter vector �i and ✓j are themselves deterministic
functions of (potentially) every previous random choice in the program. So too are
gi and fj . Let ni denote the total number of random values sampled prior to the ith

observe statement and the bold, subscripted value xj = x1 ⇥ · · · ⇥ xj denote a partial
program execution trace consisting of the first j sampled values (with x0 ⌘ ;). We
can then rewrite Equation 105 in a form which explicitly represents the dependency
structure, as

�(x) = p(x,y) =

NY

i=1

g̃i(xni)

✓
yi

����˜�i(xni)

◆ MY

j=1

˜fj(xj�1)

✓
xj

����˜✓j(xj�1)

◆
. (106)

Here, each ˜�i and ˜✓j are deterministic procedures which take partial program traces
xni ,xj and return parameter vectors �i and ✓j ; similarly g̃i and ˜fj are deterministic
functions which return density functions gi and fj . These procedures correspond ex-
actly to the incremental executions of P above. Note that the functional forms of the
distributions gi and fj are all those of random primitives, and so by construction we can
sample from any fj(·|✓j) and evaluate any gi(yi|�i) — once the parameters are known.

The normalized posterior probability distribution over program traces can be defined
as

⇡(x) , p(x|y) = �(x)

Z
, Z = p(y) =

Z
�(x)dx (107)

The normalizing constant Z is found by integrating over all possible program execution
traces.

The program output z is defined as a deterministic function of the trace; that is,
given a program execution trace x, we define z = Q(x). This allows us, in theory, to
use the posterior distribution over traces ⇡(x) to characterize the distribution over z
given the observations y; for example, the posterior mean can be found by

E[z] = E[Q(x)] =

Z
Q(x)p(x|y)dx =

Z
Q(x)⇡(x)dx. (108)

It should be clear that this characterization of a probabilistic program allows us to
define models literally as simulations, with the random elements controlled by sample

and observe statements. The generative procedure uses sample to create random
variables; synthetic data sets could be created simply by replacing any observe state-
ment with sample, without changing the unnormalized distribution p(x,y).

10.1 A first simulation-based inference engine

We will look at a a first, simple simulation-based inference engine based on likelihood
weighting. This will not be an acceptable approach to performing inference, but is eas-
ily understood and provides intuition for more complex approaches. We approximate
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define models literally as simulations, with the random elements controlled by sample

and observe statements. The generative procedure uses sample to create random
variables; synthetic data sets could be created simply by replacing any observe state-
ment with sample, without changing the unnormalized distribution p(x,y).
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We will look at a a first, simple simulation-based inference engine based on likelihood
weighting. This will not be an acceptable approach to performing inference, but is eas-
ily understood and provides intuition for more complex approaches. We approximate
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actly to the incremental executions of P above. Note that the functional forms of the
distributions gi and fj are all those of random primitives, and so by construction we can
sample from any fj(·|✓j) and evaluate any gi(yi|�i) — once the parameters are known.

The normalized posterior probability distribution over program traces can be defined
as
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, Z = p(y) =

Z
�(x)dx (107)

The normalizing constant Z is found by integrating over all possible program execution
traces.

The program output z is defined as a deterministic function of the trace; that is,
given a program execution trace x, we define z = Q(x). This allows us, in theory, to
use the posterior distribution over traces ⇡(x) to characterize the distribution over z
given the observations y; for example, the posterior mean can be found by

E[z] = E[Q(x)] =

Z
Q(x)p(x|y)dx =

Z
Q(x)⇡(x)dx. (108)

E[z] = E[Q(x)] =

Z
Q(x)⇡(x)dx =

1

Z

Z
Q(x)

�(x)

q(x)
q(x)dx (109)

It should be clear that this characterization of a probabilistic program allows us to
define models literally as simulations, with the random elements controlled by sample

and observe statements. The generative procedure uses sample to create random
variables; synthetic data sets could be created simply by replacing any observe state-
ment with sample, without changing the unnormalized distribution p(x,y).
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Likelihood Weighting
• Run K independent copies of program simulating from 

the prior 

• Accumulate unnormalized weights (likelihoods) 

• Use in approximate (Monte Carlo) integration
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expectations of the output values z as weighted sum over sampled values, with

E[Q(x)] ⇡
KX

k=1

WkQ(x

k
). (109)

A very simple way of generating trace samples x

k is to run K independent copies of
the program P , yielding K traces, each sampled according to some sequence of Mk

different densities {fk
j , ✓

k
j }Mk

j=1. To be clear what this means is running each copy of
the program entirely independently with the backend sampling proposing values of xk

j

directly via the prior.

q(xk
) =

MkY

j=1

fj(x
k
j |✓kj )

. For each of these K traces x

k, we can compute an associated unnormalized weight
w(xk

) as

w(xk
) =

�(xk
)

q(xk
)

=

NkY

i=1

gki (y
k
i |�k

i ) (110)

where Nk denotes the number of observe statements yielding tuples {(gki ,�k
i , y

k
i )}Nk

i=1

for each of the K traces. It follows that

E
"
1

K

KX

k=1

w(xk
)Q(x

k
)

#
=

1

K

KX

k=1

Z
Q(x

k
)

2

4
NkY

i=1

gki (y
k
i |�k

i )

MkY

j=1

fk
j (x

k
j |✓kj )

3

5 dx1 . . . xMk

(111)

=

1

K

KX

k=1

Z
Q(x

k
)�(xk

)dxk (112)

=

Z
Q(x)�(x)dx (113)

and thus also E
h

1
K

PK
k=1 w(x

k
)

i
=

R
�(x)dx = Z.

This allows us to compute unbiased estimates of integrals with respect to the unnor-
malized measure �(x). To estimate integrals with respect to the normalized measure
⇡(x), note that

E[Q(x)] =

Z
Q(x)⇡(x)dx =

1

Z

Z
Q(x)�(x)dx =

R
Q(x)�(x)dxR

�(x)dx
. (114)
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expectations of the output values z as weighted sum over sampled values, with
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This estimator can be compactly represented using normalized weights,

W k
=

w(xk
)

PK
`=1 w(x

`
)

(120)

bQK =

KX

k=1

W kQ(x

k
) (121)

bE⇡[Q(x)] =

KX

k=1

W kQ(x

k
)

Note that this estimator is biased for any finite K, but the bias drops of as order O(1/k)
?. Also, since each x

k is simulated independently, we have from the strong law of large
numbers that ?

Pr

✓
lim

K!1
bQK =

Z
Q(x)⇡(x)dx

◆
= 1. (122)

While this will not be an appropriate method for high-dimensional program traces,
it illustrates a baseline “guess-and-check” method that can be used on effectively any
program; “guess” by running the program forward, drawing a random value at each
sample statement, and “check”, probabilistically, by accumulating the probabilities at
each observe.

10.2 A Metropolis-Hastings algorithm

If we are given a probabilistic model specified only in terms of this simulation model, can
we define a Metropolis-Hastings algorithm to sample from its posterior? The answer is
yes. Recall that a MH algorithm draws a sequence of dependent samples according
to a target distribution ⇡(x) by using a proposal kernel q(x0|x); given a current sam-
ple x, we propose a new candidate sample x

0 ⇠ q(·|x) and compute an acceptance
probability

↵ = min

✓
1,

⇡(x0
)q(x|x0

)

⇡(x)q(x0|x)

◆
. (123)

With probability ↵ we accept this proposal, and select x0 as the next sample; otherwise,
we select x, repeating it as the next sample. Note that as the normalization constant
Z for the density ⇡ is the same for both x and x

0, we can replace ⇡ with � in this ac-
ceptance ratio. We can construct a sampler along these lines for sampling probabilistic
program traces.

The style of sampling algorithm we consider here is related to “single-site” MH al-
gorithms. We initialize the algorithm by running a single execution of the probabilistic
program, generating an initial trace x

0, of length M0. Now, given a trace x

s, we define a
proposal function q(x0|x) for sampling new candidate traces as follows. First: the trace
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Sequential Monte Carlo
• Notation 
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of calls to observe is fixed across different executions of the program; that is, the value
of N is not itself random. This is not a strong restriction in practice, as in general we
will have a generative model which is conditioned on a dataset y1, . . . , yN , and thus any
particular re-execution of the program on the same dataset will have N observe state-
ments; the number M of latent variables xj in each trace may still vary dramatically
between executions.

A sequential Monte Carlo algorithm for inference in probabilistic programs is based
on the ability to decompose the full program trace x into a product over incremental
expansions of the program trace. We define ˜

xi as the subspace of x which is sampled
in between observe statements i� 1 and i, that is, with x1:n =

˜

x1 ⇥ · · · ⇥ ˜

xn such that
˜

x1:N denotes the full program trace, and with each ˜

xi disjoint. While there are always N
such ˜

xi, each may be of varying dimensionality on each execution, and there may also
be some ˜

xi = ; if no new randomness is sampled between two subsequent observe
statements. We can thus define a sequence of incremental program execution traces
�1, . . . , �N with

�n(˜x1:n) =

NY

n=1

g(yn|˜x1:n)p(˜xn|˜x1:n�1), (126)

with associated normalized incremental targets

⇡n(˜x1:n) =
1

Zn

�n(˜x1:n) (127)

where each Zn is an unknown constant. Note that computing the density p(˜xn|˜x1:n�1)

may well be impossible in general, but we can still draw samples from it via forward
simulation of the program.

The sequential importance resampling algorithm initializes by executing K parallel
copies of the program P , and continuing execution until the first observe statement is
encountered. Weights for each partial trace ˜

x

k
1, for k = 1, . . . , K, are then initialized to

w(˜xk
1) = gk1(y

k
1 |�k

1) ⌘ p(yk1 |˜xk
1). (128)

Some of the sampled values ˜

x

k
1 will be “better” than others, in the sense that they have

higher weight. A resampling step now duplicates the more promising program execu-
tion traces, and discards those which are already very unlikely, by sampling ancestor
indices ak1 from a discrete distribution on W k

1 , where

W k
n =

w(˜xk
n)PK

`=1 w(˜x
k
n)
. (129)

After resampling, all particles have equal weight. We then continue executing the pro-
gram from the program traces {˜xak1

1 }K
k=1, until the next observe statement. In general,

for n > 1, we then have

w(˜xk
n) = gkn(y

k
n|�k

n) ⌘ p(ykn|˜x
akn�1
1:n�1 ⇥ ˜

x

k
n); (130)
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Recursion:

⇡n(˜x1:n) / p(yn|˜x1:n)p(˜xn|˜x1:n�1)⇡n�1(˜x1:n�1)

Proposal (several options):
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�1(˜x1) = p(y1|˜x1)p(˜x1)

�2(˜x1:2) = p(y2|˜x1:2)p(˜xn|˜x1)�1(˜x1)

�n(˜x1:3) = p(y3|˜x1:3)p(˜xn|˜x1:2)�2(˜x1:2)

...

�n(˜x1:n) = p(yn|˜x1:n)p(˜xn|˜x1:n�1)�n�1(˜x1:n�1)

The sequential importance resampling algorithm initializes by executing K parallel
copies of the program P , and continuing execution until the first observe statement is
encountered. Weights for each partial trace ˜

x

k
1, for k = 1, . . . , K, are then initialized to

w(˜xk
1) = gk1(y

k
1 |�k

1) ⌘ p(yk1 |˜xk
1). (141)

Some of the sampled values ˜

x

k
1 will be “better” than others, in the sense that they have

higher weight. A resampling step now duplicates the more promising program execu-
tion traces, and discards those which are already very unlikely, by sampling ancestor
indices ak1 from a discrete distribution on W k

1 , where

W k
n =

w(˜xk
n)PK

`=1 w(˜x
k
n)
. (142)

After resampling, all particles have equal weight. We then continue executing the pro-
gram from the program traces {˜xak1

1 }K
k=1, until the next observe statement. In general,

for n > 1, we then have

w(˜xk
n) = gkn(y

k
n|�k

n) ⌘ p(ykn|˜x
akn�1
1:n�1 ⇥ ˜

x

k
n); (143)

that is, each �k
n and new incremental partial trace ˜

x

k
n, are attained by continuing pro-

gram execution from the partial execution corresponding to the previous partial trace
˜

x

akn�1
1:n�1, defining

˜

x

k
1:n =

˜

x

akn�1
1:n�1 ⇥ ˜

x

k
n. (144)

After the first observation (and prior to resampling), as in the likelihood weighting
above, the weighted set of samples {˜xk

1,W
k
1 }K

k=1 provides an approximation to the first
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After the first observation (and prior to resampling), as in the likelihood weighting
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Intuitively 

- run 
- wait/weight  
- continue 

SMC Schematic
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Metropolis Hastings = “Single Site” MCMC = LMH
Posterior distribution of execution traces is proportional to trace score with 
observed values plugged in

Metropolis-Hastings acceptance rule  

Milch and Russell “General-Purpose MCMC Inference over Relational Structures.”  UAI 2006.
Goodman, Mansinghka, Roy, Bonawitz, and Tenenbaum “Church: a language for generative models.” UAI 2008.
Wingate, Stuhlmüller, Goodman “Lightweight Implementations of Probabilistic Programming Languages Via Transformational Compilation” AISTATS 2011
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– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a
parameter vector ✓. The backend samples a value x ⇠ f(·|✓) then returns
control to P which continues provided the value.

– observe: P passes to B a tuple (g,�, y) consisting of a distribution g, a
parameter vector �, and a observed value y. Control is then returned to P
which continues.

– If P has terminated, it returns a value z, which can be any arbitrary (deter-
ministic) function of the program trace.

Suppose after a single execution of a probabilistic program in this manner, we en-
counter N observe statements and M sample statements. This yields sequences of
tuples {(gi,�i, yi)}N

i=1 corresponding to the observe statements, and {(fj, ✓j)}M
j=1 cor-

responding to the sample statements, with the associated sequence of sampled values
(i.e. the program execution trace) {xj}M

j=1. The probability of this program execution
trace can be defined, up to an unknown normalizing constant, as a product of all ran-
dom choices x and all observed values y, with

�(x) , p(x,y) =
NY

i=1

gi(yi|�i)

MY

j=1

fj(xj|✓j). (105)

Note that this ordering, as well as the cardinalities M and N , are not necessarily iden-
tical across different runs of the program.

Obscured by the notation above is the dependency structure induced by the prob-
abilistic program P . Each parameter vector �i and ✓j are themselves deterministic
functions of (potentially) every previous random choice in the program. So too are
gi and fj . Let ni denote the total number of random values sampled prior to the ith

observe statement and the bold, subscripted value xj = x1 ⇥ · · · ⇥ xj denote a partial
program execution trace consisting of the first j sampled values (with x0 ⌘ ;). We
can then rewrite Equation 105 in a form which explicitly represents the dependency
structure, as

�(x) = p(x,y) =
NY

i=1

g̃i(xni)

✓
yi

����˜�i(xni)

◆ MY

j=1

˜fj(xj�1)

✓
xj

����˜✓j(xj�1)

◆
. (106)

Here, each ˜�i and ˜✓j are deterministic procedures which take partial program traces
xni ,xj and return parameter vectors �i and ✓j ; similarly g̃i and ˜fj are deterministic
functions which return density functions gi and fj . These procedures correspond ex-
actly to the incremental executions of P above. Note that the functional forms of the
distributions gi and fj are all those of random primitives, and so by construction we can
sample from any fj(·|✓j) and evaluate any gi(yi|�i) — once the parameters are known.
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This estimator can be compactly represented using normalized weights,

Wk =
w(xk

)

PK
`=1 w(x

`
)

(120)

bQK =

KX

k=1

WkQ(x

k
) (121)

bE⇡[Q(x)] =

KX

k=1

WkQ(x

k
)

Note that this estimator is biased for any finite K, but the bias drops of as order O(1/k)
?. Also, since each x

k is simulated independently, we have from the strong law of large
numbers that ?

Pr

✓
lim

K!1
bQK =

Z
Q(x)⇡(x)dx

◆
= 1. (122)

While this will not be an appropriate method for high-dimensional program traces,
it illustrates a baseline “guess-and-check” method that can be used on effectively any
program; “guess” by running the program forward, drawing a random value at each
sample statement, and “check”, probabilistically, by accumulating the probabilities at
each observe.

10.2 A Metropolis-Hastings algorithm

If we are given a probabilistic model specified only in terms of this simulation model, can
we define a Metropolis-Hastings algorithm to sample from its posterior? The answer is
yes. Recall that a MH algorithm draws a sequence of dependent samples according
to a target distribution ⇡(x) by using a proposal kernel q(x0|x); given a current sam-
ple x, we propose a new candidate sample x

0 ⇠ q(·|x) and compute an acceptance
probability

↵ = min

✓
1,

⇡(x0
)q(x|x0

)

⇡(x)q(x0|x)

◆
. (123)

With probability ↵ we accept this proposal, and select x0 as the next sample; otherwise,
we select x, repeating it as the next sample. Note that as the normalization constant
Z for the density ⇡ is the same for both x and x

0, we can replace ⇡ with � in this ac-
ceptance ratio. We can construct a sampler along these lines for sampling probabilistic
program traces.

The style of sampling algorithm we consider here is related to “single-site” MH al-
gorithms. We initialize the algorithm by running a single execution of the probabilistic
program, generating an initial trace x

0, of length M0. Now, given a trace x

s, we define a
proposal function q(x0|x) for sampling new candidate traces as follows. First: the trace
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The normalized posterior probability distribution over program traces can be defined
as

⇡(x) , p(x|y) = �(x)

Z
, Z = p(y) =

Z
�(x)dx (107)

The normalizing constant Z is found by integrating over all possible program execution
traces.

The program output z is defined as a deterministic function of the trace; that is,
given a program execution trace x, we define z = Q(x). This allows us, in theory, to
use the posterior distribution over traces ⇡(x) to characterize the distribution over z
given the observations y; for example, the posterior mean can be found by

E[z] = E[Q(x)] =

Z
Q(x)p(x|y)dx =

Z
Q(x)⇡(x)dx. (108)

E[z] = E[Q(x)] =

Z
Q(x)⇡(x)dx =

1

Z

Z
Q(x)

�(x)

q(x)
q(x)dx (109)

E[Q(x)] =

1

Z

Z
Q(x)

�(x)

q(x)
q(x)dx ⇡ 1

Z

1

K

KX

k=1

Q(x

k
)w(xk

) (110)

It should be clear that this characterization of a probabilistic program allows us to
define models literally as simulations, with the random elements controlled by sample

and observe statements. The generative procedure uses sample to create random
variables; synthetic data sets could be created simply by replacing any observe state-
ment with sample, without changing the unnormalized distribution p(x,y).

10.1 A first simulation-based inference engine

We will look at a a first, simple simulation-based inference engine based on likelihood
weighting. This will not be an acceptable approach to performing inference, but is eas-
ily understood and provides intuition for more complex approaches. We approximate
expectations of the output values z as weighted sum over sampled values, with

E[Q(x)] ⇡
KX

k=1

WkQ(x

k
). (111)

A very simple way of generating trace samples x

k is to run K independent copies of
the program P , yielding K traces, each sampled according to some sequence of Mk

different densities {fk
j , ✓

k
j }Mk

j=1. To be clear what this means is running each copy of
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Number of samples in  
original trace

Probability of new part of 
proposed execution trace

A TUTORIAL ON PROBABILISTIC PROGRAMMING

x

s has length M s, and we pick a single random choice xs
` by drawing ` uniformly from

the set of integers 1, . . . ,M s. Then, we apply a reversible transition kernel (x0
`|xs

`) to
propose a new value at that specific random choice. We now re-run the remainder of
the program P , starting with the partial program execution trace x

0
` = x

s
`�1 ⇥ x0

`, sim-
ulating the rest of the program to generate a new proposal trace x

0 of length M 0. This
leads to an overall proposal density

q(x0|xs
) =

1

M s
(x0

`|xs
`)

M 0Y

j=`+1

f 0
j(x

0
j|✓0j) (124)

which in turn leads to an acceptance probability

↵ = min

 
1,

�(x0
)M 0(xs

`|x0
`)
QMs

j=`+1 f
s
j (x

s
j |✓sj)

�(x)M s(x0
`|xs

`)
QM 0

j=`+1 f
0
j(x

0
j|✓0j)

!
(125)

which defines a basic MCMC sampler targeting the space of program execution traces.

10.2.1 A DATABASE OF RANDOM CHOICES

For high-dimensional problems, the basic Metropolis-Hasting algorithm that arises by
proposing according to Equation 124 will still perform poorly, as after changing propos-
ing a single value x0

` we re-run the rest of the program. This can be made more efficient
by re-using some of the sampled values in the remainder of the original trace x

s.
Te be able to meaningfully re-use previously sampled values, we need to introduce

a concept of an address space A, which we use to uniquely label every random choice
we sample during program execution (?). On the initial execution, for each random
choice x0

j 2 Xj , we record a tuple (↵, x0
j) 2 A ⇥ Xj . Then, when re-simulating the

remainder of the program in the proposal in Equation 124, if we encounter a sample

statement which has the same address ↵ as a sampled value in the previous trace,
and distribution (or “type”) of f is the same, then instead of re-simulating a new value
x0 we re-use the previous value associated with that ↵ in the database. If the proposal
is accepted, we update the random database, associating new values of x with each
↵, and removing from the database any tuples which do not exist in the updated trace.
Note that just because the value is re-used does not mean that we can drop that term
from the acceptance ratio in Equation 125 — in particular, even if some x0

= xs at some
address, the associated parameter vector ✓0 6= ✓s in general.

There is possibly a subtle point here regarding the reversibility of the proposal qRDB.

10.3 A sequential Monte Carlo algorithm

A sequential Monte Carlo algorithm for probabilistic program inference is in some sense
a refinement of the basic likelihood weighting or importance sampling method, which
can take advantage of incremental evidence when available to provide more efficient in-
ference in higher-dimensional models. For this discussion we assume that the number
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LMH Acceptance Ratio
“Single site update” = sample from the prior = run program forward

MH acceptance ratio
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(x0
m|xm) = fm(x0

m|✓m), ✓m = ✓

0
m

Number of sample statements 
in original trace

Number of sample statements 
in new trace

Probability of proposal trace continuation  
restarting original trace at mth sample 
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Metropolis Hastings

• Execute program P .

• While executing P if a sample, observe, or predict is reached do:

– sample: P passes us a continuation k and an object (f, ✓) consisting of a
distribution f with parameter ✓. We sample a value x ⇠ f(·|✓), store sample
tuple (x,k,f ,✓), then call (k x).

– observe: P passes us a continuation k, an object (g,�) consisting of a
distribution g with parameter �, and a observed value y. We store observe
tuple (y,k,g,�), and call (k).

– predict: P passes us a continuation k, a label `, and a value z. We store
predict tuple (`, z) and call (k).

• When P terminates “output” all stored predict tuples (`, z).

• Repeat forever

– Randomly select mth (x,k,f ,✓) sample tuple from M in the store.

– Sample a new value x0 ⇠ f(·|✓)
– Resume P by calling (k x

0
) if sample, observe, or predict reached do:

⇤ sample: P passes us a continuation k

0 and an object (f 0, ✓0) consisting
of a distribution f 0 with parameter ✓0. We sample a value x0 ⇠ f 0

(·|✓0),
store (x0,k0,f 0,✓0), then call (k0 x

0
).

⇤ observe: P passes us a continuation k

0, an object (g0,�0
) consisting of

a distribution g0 with parameter �0, and a observed value y. We store
(y, k0,g0,�0), and call (k0).

⇤ predict: P passes us a continuation k

0, a label `0, and a value z0. We
store (`0, z0) and call (k0).

– When P terminates we compute

↵ = min

 
1,

�(x0
)M

QM
j=m fj(xj|✓j)

�(x)M 0QM 0

j=m f 0
j(x

0
j|✓0j)

!

and accept proposed trace and and output (`0, z0) w.p. ↵, keep old trace and
output (`, z) otherwise.
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Implementation Strategy
• Interpreted 

• Interpreter tracks side effects and directs control flow 
for inference 

• Compiled  

• Leverages existing compiler infrastructure 

• Can only exert control over flow from within function 
calls  

• e.g. sample, observe, predict

Wingate, Stuhlmüller, Goodman “Lightweight Implementations of Probabilistic Programming Languages Via Transformational Compilation” AISTATS 2011 
Paige and Wood “A Compilation Target for Probabilistic Programming Languages” ICML 2014 



Probabilistic C
Standard C plus new directives: observe and predict  

observe constrains 
program execution 

predict emits 
sampled values 



Actually 

- run 
- wait/weight  
- fork 

Probabilistic C Implementation
Pr

oc
es

se
s

observe
new processes/continuations

Paige and Wood “A Compilation Target for Probabilistic Programming Languages” ICML 2014 



Continuations
• A continuation is a function that encapsulates the “rest of the 

computation” 

• A Continuation Passing Style (CPS) transformation rewrites 
programs so  

• no function ever returns 

• every function takes an extra argument, a function called the  
continuation  

• Standard programming language technique 

• No limitations

Friedman and Wand. “Essentials of programming languages.” MIT press, 2008. 
Fischer, Kiselyov, and Shan “Purely functional lazy non-deterministic programming” ACM Sigplan 2009 
Goodman and Stuhlmüller http://dippl.org/ 2014 
Tolpin https://bitbucket.org/probprog/anglican/ 2014 



Example CPS Transformation

First continuation

Second cont.
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10.5.1 EXAMPLES OF CPS TRANSFORMATION

Here we demonstrate continuation passing style by example, showing a few simple Clo-
jure functions as transformed into CPS. We will denote CPS-transformed functions by
ending their names with &; the last argument c will explicitly represent the continuation.

;; CPS-transformed "primitives"
(defn +& [a b k] (k (+ a b)))

(defn *& [a b k] (k (* a b)))

;; example:
(+& 2 4 println)

(*& 3 5 println)

Running this program prints out 6 and 15. Each of the new functions +& and *& take
an additional final argument which represents “what to do next”. Here, we simply print
the output by passing println. When we have composition of functions, then writing
the computation using CPS-transformed functions makes clear the actual order of ex-
ecution, from “inside” to “outside”. Suppose we try to compute a sum of a product and
another number, i.e. evaluate equations of the form ab+ c.

;; Standard Clojure:
(println (+ (* 2 3) 4))

;; With CPS-transformed primitives:
(*& 2 3 (fn [x] (+& x 4 println)))

;; Here’s probably the clearest way to write this:
(defn add-to-product&

"compute a*b + c"

[a b c k]

(*& a b

(fn [tmp] (+& tmp c k))))

(add-to-product& 2 3 4 println)

The add-to-product function first computes the product of a and b (the innermost
computation), and then calls a continuation which adds c to the result, which then calls
the outermost continuation. Note that in this example we don’t necessarily have to nest
the continuation; we could define the continuation ahead of time, with for example using
an auxiliary function.

;; Defining an explicit function for the continuation:
(let [add-four-to-result (fn [x k] (+& x 4 k))]

(*& 2 3 (fn [x] (add-four-to-result x println))))
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CPS Explicitly Linearizes Execution

• Compiling to a pure language with lexical scoping ensures 

A. variables needed in subsequent computation are bound in the environment  

B. can’t be modified by multiple calls to the continuation function

WOOD GROUP

Let’s try a new example: the pythagorean theorem, which we use to compute the hy-
potenuse of right triangle.

;; Define sqrt& as a new "primitive" function
(defn sqrt& [a k] (k (Math/sqrt a)))

;; Define square& using *&
(defn square& [a k] (*& a a k))

;; For example:
(square& 5 println) ; 25
(sqrt& 9 println) ; 3

(defn pythag&

"compute sqrt(x^2 + y^2)"

[x y k]

(square& x

(fn [xx]

(square& y

(fn [yy]

(+& xx yy

(fn [xxyy]

(sqrt& xxyy k))))))))

;; Test it:
(pythag& 3 4 println) ; 5
(pythag& 5 12 println) ; 13

Note that the continuations we define within the pythag& function have state, in their
closure! We cannot write, for example, the function (fn [yy k] (+& xx yy k)) since
it requires a value xx, a variable which is available due to being in scope at the time the
function is called, rather than passed in as an argument. Immutability in Clojure/Angli-
can allows us to “get away with" calling these continuation functions repeatedly, anyway,
since no subsequent executions of the program will modify these variables.

10.5.2 AN EXAMPLE OF A PROBABILISTIC MODEL

(defquery flip-example [outcome]

(let [p (sample (uniform-continuous 0 1))]

(observe (flip p) outcome)

(predict :p p))

(flip-example true)
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"compute sqrt(x^2 + y^2)"

[x y k]

(square& x

(fn [xx]

(square& y

(fn [yy]

(+& xx yy

(fn [xxyy]

(sqrt& xxyy k))))))))

;; Test it:
(pythag& 3 4 println) ; 5
(pythag& 5 12 println) ; 13

Note that the continuations we define within the pythag& function have state, in their
closure! We cannot write, for example, the function (fn [yy k] (+& xx yy k)) since
it requires a value xx, a variable which is available due to being in scope at the time the
function is called, rather than passed in as an argument. Immutability in Clojure/Angli-
can allows us to “get away with" calling these continuation functions repeatedly, anyway,
since no subsequent executions of the program will modify these variables.

10.5.2 AN EXAMPLE OF A PROBABILISTIC MODEL

(defquery flip-example [outcome]

(let [p (sample (uniform-continuous 0 1))]

(observe (flip p) outcome)

(predict :p p))

(flip-example true)

Consider a very simple program which samples a probability p uniformly on (0, 1)
and then observe true from a single Bernoulli trial. This model, in traditional Clo-
jure/Anglican syntax, would look like

(defn flip-example [outcome]

(let [p (sample (uniform-continuous 0 1))]

(observe (flip p) outcome)

(predict :p p))

(flip-example true)

To give an idea of how this program might look once CPS-transformed, we implement
a “dummy" inference backend.
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"compute sqrt(x^2 + y^2)"

[x y k]

(square& x

(fn [xx]

(square& y

(fn [yy]

(+& xx yy

(fn [xxyy]

(sqrt& xxyy k))))))))

;; Test it:
(pythag& 3 4 println) ; 5
(pythag& 5 12 println) ; 13

Note that the continuations we define within the pythag& function have state, in their
closure! We cannot write, for example, the function (fn [yy k] (+& xx yy k)) since
it requires a value xx, a variable which is available due to being in scope at the time the
function is called, rather than passed in as an argument. Immutability in Clojure/Angli-
can allows us to “get away with" calling these continuation functions repeatedly, anyway,
since no subsequent executions of the program will modify these variables.

10.5.2 AN EXAMPLE OF A PROBABILISTIC MODEL

(defquery flip-example [outcome]

(let [p (sample (uniform-continuous 0 1))]

(observe (flip p) outcome)

(predict :p p))

(flip-example true)

(let [u (uniform-continuous 0 1)

p (sample u)

dist (flip p)]

(observe dist outcome)

(predict :p p))

Consider a very simple program which samples a probability p uniformly on (0, 1)
and then observe true from a single Bernoulli trial. This model, in traditional Clo-
jure/Anglican syntax, would look like
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Are “Compiled” to Native CPS-Clojure
WOOD GROUP

(defn flip-query& [outcome k1]

(uniform-continuous& 0 1

(fn [dist1]

(sample& dist1

(fn [p] ((fn [p k2]

(flip& p

(fn [dist2]

(observe& dist2 outcome

(fn []

(predict& :p p k2))))))

p k1))))))

(flip-query& true terminate)

(defn weighted-sample [query&]

(init-backend!)

(query& terminate)

[(:predicts @backend) (:log-weight @backend)])

(weighted-sample flip-query-true&)

10.6

And then talk about implementation, from transformation compilation to prob.-c to An-
glican style with brooks’ prob.-c and how to get "the same" via CPS transformation
and compilation to a pure functional language – this works because of datastructures.
mention massive parallelism automatically.

We can show Stanford’s stuff on C3 as a family that decends from trans. comp. to
our family of inference methods that decend, roughly, from SMC.

We should talk about why functional datastructures are required for valid statistical
reasoning. And why various languages have continuations natively and why some don’t
and what that means.

Pure functional data structures.
composibility (tuan anh’s request hmm, Noah style models),
why semantics matters and point out that higher order probabilsitic langauges dont’

have defined semantics
program transformations (by example) and hakuru as something that could arise

(advanced)

11. Advanced Applications
FW

Hit on Picture and perception.
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A TUTORIAL ON PROBABILISTIC PROGRAMMING

"compute sqrt(x^2 + y^2)"

[x y k]

(square& x

(fn [xx]

(square& y

(fn [yy]

(+& xx yy

(fn [xxyy]

(sqrt& xxyy k))))))))

;; Test it:
(pythag& 3 4 println) ; 5
(pythag& 5 12 println) ; 13

Note that the continuations we define within the pythag& function have state, in their
closure! We cannot write, for example, the function (fn [yy k] (+& xx yy k)) since
it requires a value xx, a variable which is available due to being in scope at the time the
function is called, rather than passed in as an argument. Immutability in Clojure/Angli-
can allows us to “get away with" calling these continuation functions repeatedly, anyway,
since no subsequent executions of the program will modify these variables.

10.5.2 AN EXAMPLE OF A PROBABILISTIC MODEL

(defquery flip-example [outcome]

(let [p (sample (uniform-continuous 0 1))]

(observe (flip p) outcome)

(predict :p p))

(flip-example true)

(let [u (uniform-continuous 0 1)

p (sample u)

dist (flip p)]

(observe dist outcome)

(predict :p p))

Consider a very simple program which samples a probability p uniformly on (0, 1)
and then observe true from a single Bernoulli trial. This model, in traditional Clo-
jure/Anglican syntax, would look like
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(defn flip-example [outcome]

(let [p (sample (uniform-continuous 0 1))]

(observe (flip p) outcome)

(predict :p p))

(flip-example true)

To give an idea of how this program might look once CPS-transformed, we implement
a very simple likelihood weighting inference backend.

;; CPS-ed distribution constructors
(defn uniform-continuous& [a b k]

(k (uniform-continuous a b)))

(defn flip& [p k]

(k (flip p)))

;; Implement a "backend"
(defn sample& [dist k]

;; [ ALGORITHM-SPECIFIC IMPLEMENTATION HERE ]
;; Pass the sampled value to the continuation
(k (sample dist)))

(defn observe& [dist value k]

(println "log-weight =" (observe dist value))

;; [ ALGORITHM-SPECIFIC IMPLEMENTATION HERE ]
;; Call continuation with no arguments
(k))

(defn predict& [label value k]

;; [ ALGORITHM-SPECIFIC IMPLEMENTATION HERE ]
(k label value))

To CPS transform the program itself, we first perform a “desugaring” step, replacing the
let block with a function call.

;; Before CPS transformation, desugar by removing ‘let‘ block
(defn flip-example-desugared [outcome]

((fn [p]

(observe (flip p) outcome)

(predict :p p))

(sample (uniform-continuous 0 1))))

;; This is exactly the same as ‘flip-example‘ above
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(defn flip-query& [outcome k1]

(uniform-continuous& 0 1

(fn [dist1]

(sample& dist1

(fn [p] ((fn [p k2]

(flip& p

(fn [dist2]

(observe& dist2 outcome

(fn []

(predict& :p p k2))))))

p k1))))))

(flip-query& true terminate)

(defn weighted-sample [query&]

(init-backend!)

(query& terminate)

[(:predicts @backend) (:log-weight @backend)])

(weighted-sample flip-query-true&)

10.6

And then talk about implementation, from transformation compilation to prob.-c to An-
glican style with brooks’ prob.-c and how to get "the same" via CPS transformation
and compilation to a pure functional language – this works because of datastructures.
mention massive parallelism automatically.

We can show Stanford’s stuff on C3 as a family that decends from trans. comp. to
our family of inference methods that decend, roughly, from SMC.

We should talk about why functional datastructures are required for valid statistical
reasoning. And why various languages have continuations natively and why some don’t
and what that means.

Pure functional data structures.
composibility (tuan anh’s request hmm, Noah style models),
why semantics matters and point out that higher order probabilsitic langauges dont’

have defined semantics
program transformations (by example) and hakuru as something that could arise

(advanced)

11. Advanced Applications
FW

Hit on Picture and perception.
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A TUTORIAL ON PROBABILISTIC PROGRAMMING

"compute sqrt(x^2 + y^2)"

[x y k]

(square& x

(fn [xx]

(square& y

(fn [yy]

(+& xx yy

(fn [xxyy]

(sqrt& xxyy k))))))))

;; Test it:
(pythag& 3 4 println) ; 5
(pythag& 5 12 println) ; 13

Note that the continuations we define within the pythag& function have state, in their
closure! We cannot write, for example, the function (fn [yy k] (+& xx yy k)) since
it requires a value xx, a variable which is available due to being in scope at the time the
function is called, rather than passed in as an argument. Immutability in Clojure/Angli-
can allows us to “get away with" calling these continuation functions repeatedly, anyway,
since no subsequent executions of the program will modify these variables.

10.5.2 AN EXAMPLE OF A PROBABILISTIC MODEL

(defquery flip-example [outcome]

(let [p (sample (uniform-continuous 0 1))]

(observe (flip p) outcome)

(predict :p p))

(flip-example true)

(let [u (uniform-continuous 0 1)

p (sample u)

dist (flip p)]

(observe dist outcome)

(predict :p p))

Consider a very simple program which samples a probability p uniformly on (0, 1)
and then observe true from a single Bernoulli trial. This model, in traditional Clo-
jure/Anglican syntax, would look like

83

Clojure Anglican “linearized”

A TUTORIAL ON PROBABILISTIC PROGRAMMING

(defn flip-example [outcome]

(let [p (sample (uniform-continuous 0 1))]

(observe (flip p) outcome)

(predict :p p))

(flip-example true)

To give an idea of how this program might look once CPS-transformed, we implement
a very simple likelihood weighting inference backend.

;; CPS-ed distribution constructors
(defn uniform-continuous& [a b k]

(k (uniform-continuous a b)))

(defn flip& [p k]

(k (flip p)))

;; Implement a "backend"
(defn sample& [dist k]

;; [ ALGORITHM-SPECIFIC IMPLEMENTATION HERE ]
;; Pass the sampled value to the continuation
(k (sample dist)))

(defn observe& [dist value k]

(println "log-weight =" (observe dist value))

;; [ ALGORITHM-SPECIFIC IMPLEMENTATION HERE ]
;; Call continuation with no arguments
(k))

(defn predict& [label value k]

;; [ ALGORITHM-SPECIFIC IMPLEMENTATION HERE ]
(k label value))

To CPS transform the program itself, we first perform a “desugaring” step, replacing the
let block with a function call.

;; Before CPS transformation, desugar by removing ‘let‘ block
(defn flip-example-desugared [outcome]

((fn [p]

(observe (flip p) outcome)

(predict :p p))

(sample (uniform-continuous 0 1))))

;; This is exactly the same as ‘flip-example‘ above

85



Explicit Functional Form for “Rest of Program”
WOOD GROUP

(defn flip-query& [outcome k1]

(uniform-continuous& 0 1

(fn [dist1]

(sample& dist1

(fn [p] ((fn [p k2]

(flip& p

(fn [dist2]

(observe& dist2 outcome

(fn []

(predict& :p p k2))))))

p k1))))))

(flip-query& true terminate)

(defn weighted-sample [query&]

(init-backend!)

(query& terminate)

[(:predicts @backend) (:log-weight @backend)])

(weighted-sample flip-query-true&)

10.6

And then talk about implementation, from transformation compilation to prob.-c to An-
glican style with brooks’ prob.-c and how to get "the same" via CPS transformation
and compilation to a pure functional language – this works because of datastructures.
mention massive parallelism automatically.

We can show Stanford’s stuff on C3 as a family that decends from trans. comp. to
our family of inference methods that decend, roughly, from SMC.

We should talk about why functional datastructures are required for valid statistical
reasoning. And why various languages have continuations natively and why some don’t
and what that means.

Pure functional data structures.
composibility (tuan anh’s request hmm, Noah style models),
why semantics matters and point out that higher order probabilsitic langauges dont’

have defined semantics
program transformations (by example) and hakuru as something that could arise

(advanced)

11. Advanced Applications
FW

Hit on Picture and perception.
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InterruptibleWOOD GROUP

(defn flip-query& [outcome k1]

(uniform-continuous& 0 1

(fn [dist1]

(sample& dist1

(fn [p] ((fn [p k2]

(flip& p

(fn [dist2]

(observe& dist2 outcome

(fn []

(predict& :p p k2))))))

p k1))))))

(flip-query& true terminate)

(defn weighted-sample [query&]

(init-backend!)

(query& terminate)

[(:predicts @backend) (:log-weight @backend)])

(weighted-sample flip-query-true&)

10.6

And then talk about implementation, from transformation compilation to prob.-c to An-
glican style with brooks’ prob.-c and how to get "the same" via CPS transformation
and compilation to a pure functional language – this works because of datastructures.
mention massive parallelism automatically.

We can show Stanford’s stuff on C3 as a family that decends from trans. comp. to
our family of inference methods that decend, roughly, from SMC.

We should talk about why functional datastructures are required for valid statistical
reasoning. And why various languages have continuations natively and why some don’t
and what that means.

Pure functional data structures.
composibility (tuan anh’s request hmm, Noah style models),
why semantics matters and point out that higher order probabilsitic langauges dont’

have defined semantics
program transformations (by example) and hakuru as something that could arise

(advanced)

11. Advanced Applications
FW

Hit on Picture and perception.
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(defn flip-query& [outcome k1]

(uniform-continuous& 0 1

(fn [dist1]

(sample& dist1

(fn [p] ((fn [p k2]

(flip& p

(fn [dist2]

(observe& dist2 outcome

(fn []

(predict& :p p k2))))))

p k1))))))

(flip-query& true terminate)

(defn weighted-sample [query&]

(init-backend!)

(query& terminate)

[(:predicts @backend) (:log-weight @backend)])

(weighted-sample flip-query-true&)

10.6

And then talk about implementation, from transformation compilation to prob.-c to An-
glican style with brooks’ prob.-c and how to get "the same" via CPS transformation
and compilation to a pure functional language – this works because of datastructures.
mention massive parallelism automatically.

We can show Stanford’s stuff on C3 as a family that decends from trans. comp. to
our family of inference methods that decend, roughly, from SMC.

We should talk about why functional datastructures are required for valid statistical
reasoning. And why various languages have continuations natively and why some don’t
and what that means.

Pure functional data structures.
composibility (tuan anh’s request hmm, Noah style models),
why semantics matters and point out that higher order probabilsitic langauges dont’

have defined semantics
program transformations (by example) and hakuru as something that could arise

(advanced)

11. Advanced Applications
FW

Hit on Picture and perception.
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WOOD GROUP

(defn flip-query& [outcome k1]

(uniform-continuous& 0 1

(fn [dist1]

(sample& dist1

(fn [p] ((fn [p k2]

(flip& p

(fn [dist2]

(observe& dist2 outcome

(fn []

(predict& :p p k2))))))

p k1))))))

(flip-query& true terminate)

(defn weighted-sample [query&]

(init-backend!)

(query& terminate)

[(:predicts @backend) (:log-weight @backend)])

(weighted-sample flip-query-true&)

10.6

And then talk about implementation, from transformation compilation to prob.-c to An-
glican style with brooks’ prob.-c and how to get "the same" via CPS transformation
and compilation to a pure functional language – this works because of datastructures.
mention massive parallelism automatically.

We can show Stanford’s stuff on C3 as a family that decends from trans. comp. to
our family of inference methods that decend, roughly, from SMC.

We should talk about why functional datastructures are required for valid statistical
reasoning. And why various languages have continuations natively and why some don’t
and what that means.

Pure functional data structures.
composibility (tuan anh’s request hmm, Noah style models),
why semantics matters and point out that higher order probabilsitic langauges dont’

have defined semantics
program transformations (by example) and hakuru as something that could arise

(advanced)

11. Advanced Applications
FW

Hit on Picture and perception.
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Inference “Backend”

WOOD GROUP

(defn flip-example [outcome]

(let [p (sample (uniform-continuous 0 1))]

(observe (flip p) outcome)

(predict :p p))

(flip-example true)

To give an idea of how this program might look once CPS-transformed, we implement
a very simple likelihood weighting inference backend.

;; CPS-ed distribution constructors
(defn uniform-continuous& [a b k]

(k (uniform-continuous a b)))

(defn flip& [p k]

(k (flip p)))

;; Implement a "backend"
(defn sample& [dist k]

;; [ ALGORITHM-SPECIFIC IMPLEMENTATION HERE ]
;; Pass the sampled value to the continuation
(k (sample dist)))

(defn observe& [dist value k]

(println "log-weight =" (observe dist value))

;; [ ALGORITHM-SPECIFIC IMPLEMENTATION HERE ]
;; Call continuation with no arguments
(k))

(defn predict& [label value k]

;; [ ALGORITHM-SPECIFIC IMPLEMENTATION HERE ]
(k label value))

To CPS transform the program itself, we first perform a “desugaring” step, replacing the
let block with a function call.

;; Before CPS transformation, desugar by removing ‘let‘ block
(defn flip-example-desugared [outcome]

((fn [p]

(observe (flip p) outcome)

(predict :p p))

(sample (uniform-continuous 0 1))))

;; This is exactly the same as ‘flip-example‘ above
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“Backend”

Pure compiled deterministic computation 

Pstart Pcontinue Pcontinue terminate

sample

(f, ✓, k)

WOOD GROUP

• We initialize by beginning execution of the program P .

• When execution of P encounters a sample statement, observe statement, or the
end of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a
parameter vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns
control to P which continues execution, providing this value as the output of
sample.

– observe: P passes to B a tuple (g,�, y) consisting of a distribution g, a
parameter vector �, and a observed value y. Control is then returned to P ,
which continues execution.

– If P has terminated, it returns a value z, which can be any arbitrary (deter-
ministic) function of the program trace.

Importance Sampling

• For k = 1 . . .1

– Initialize w  1

– Execute program P .

– While executing P if a sample, observe, or the end of the program is
reached do:

⇤ sample: P passes to us a continuation k and a tuple (f, ✓) consisting of
a distribution f and a parameter vector ✓. We sample a value x ⇠ f(·|✓)
then call (k x) which continues execution of P provided the value.
⇤ observe: P passes to us a continuation k and a tuple (g,�, y) consist-

ing of a distribution g, a parameter vector �, and a observed value y.
We compute w  wg(y|�) and call (k).
⇤ If P terminates, it passes to us a value z. We “output” z, w.

64

observe

(g,�, y, k)

WOOD GROUP

• We initialize by beginning execution of the program P .

• When execution of P encounters a sample statement, observe statement, or the
end of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a
parameter vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns
control to P which continues execution, providing this value as the output of
sample.

– observe: P passes to B a tuple (g,�, y) consisting of a distribution g, a
parameter vector �, and a observed value y. Control is then returned to P ,
which continues execution.

– If P has terminated, it returns a value z, which can be any arbitrary (deter-
ministic) function of the program trace.

Importance Sampling

• For k = 1 . . .1

– Initialize w  1

– Execute program P .

– While executing P if a sample, observe, or the end of the program is
reached do:

⇤ sample: P passes to us a continuation k and a tuple (f, ✓) consisting of
a distribution f and a parameter vector ✓. We sample a value x ⇠ f(·|✓)
then call (k x) which continues execution of P provided the value.
⇤ observe: P passes to us a continuation k and a tuple (g,�, y) consist-

ing of a distribution g, a parameter vector �, and a observed value y.
We compute w  wg(y|�) and call (k).
⇤ If P terminates, it passes to us a value z. We “output” z, w.
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predict

WOOD GROUP

• We initialize by beginning execution of the program P .

• When execution of P encounters a sample statement, observe statement, or the
end of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a
parameter vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns
control to P which continues execution, providing this value as the output of
sample.

– observe: P passes to B a tuple (g,�, y) consisting of a distribution g, a
parameter vector �, and a observed value y. Control is then returned to P ,
which continues execution.

– If P has terminated, it returns a value z, which can be any arbitrary (deter-
ministic) function of the program trace.

Importance Sampling

• For k = 1 . . .1

– Initialize w  1

– Execute program P .

– While executing P if a sample, observe, or the end of the program is
reached do:

⇤ sample: P passes to us a continuation k and a tuple (f, ✓) consisting of
a distribution f and a parameter vector ✓. We sample a value x ⇠ f(·|✓)
then call (k x) which continues execution of P provided the value.
⇤ observe: P passes to us a continuation k and a tuple (g,�, y) consist-

ing of a distribution g, a parameter vector �, and a observed value y.
We compute w  wg(y|�) and call (k).
⇤ If P terminates, it passes to us a value z. We “output” z, w.
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Likelihood Weighting “Backend”

A TUTORIAL ON PROBABILISTIC PROGRAMMING

(defn flip& [p k]

(k (flip p)))

(defn terminate [] nil)

(def backend (atom {}))

(defn init-backend! []

(swap! backend #(assoc % :log-weight 0.0))

(swap! backend #(assoc % :predicts {})))

(defn ca! [log-weight]

(swap! backend #(assoc % :log-weight (+ (get % :log-weight) log-weight))))

(defn store! [label value]

(swap! backend #(assoc-in % [:predicts label] value)))

(init-backend!)

(defn sample& [dist k]

;; Call the continuation with a sampled value
(k (sample dist)))

(defn observe& [dist value k]

;; Compute and record the log weight
(add-log-weight! (observe dist value))

;; Call the continuation with no arguments
(k))

(defn predict& [label value k]

;; Store predict, and call continuation
(store! label value)

(k))
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Likelihood Weighting Example
Pstart Pcontinue Pcontinue terminate P

terminatesample&
observe& predict&

p ⇠ U(0, 1) w  pI(outcome=true)(1� p)I(outcome=false)

“Backend”

WOOD GROUP

Let’s try a new example: the pythagorean theorem, which we use to compute the hy-
potenuse of right triangle.

;; Define sqrt& as a new "primitive" function
(defn sqrt& [a k] (k (Math/sqrt a)))

;; Define square& using *&
(defn square& [a k] (*& a a k))

;; For example:
(square& 5 println) ; 25
(sqrt& 9 println) ; 3

(defn pythag&

"compute sqrt(x^2 + y^2)"

[x y k]

(square& x

(fn [xx]

(square& y

(fn [yy]

(+& xx yy

(fn [xxyy]

(sqrt& xxyy k))))))))

;; Test it:
(pythag& 3 4 println) ; 5
(pythag& 5 12 println) ; 13

Note that the continuations we define within the pythag& function have state, in their
closure! We cannot write, for example, the function (fn [yy k] (+& xx yy k)) since
it requires a value xx, a variable which is available due to being in scope at the time the
function is called, rather than passed in as an argument. Immutability in Clojure/Angli-
can allows us to “get away with" calling these continuation functions repeatedly, anyway,
since no subsequent executions of the program will modify these variables.

10.5.2 AN EXAMPLE OF A PROBABILISTIC MODEL

(defquery flip-example [outcome]

(let [p (sample (uniform-continuous 0 1))]

(observe (flip p) outcome)

(predict :p p))

(flip-example true)
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SMC BackendWOOD GROUP

(defn sample& [dist k]

;; Call the continuation with a sampled value
(k (sample dist)))

(defn observe& [dist value k]

;; Block and wait for K calls to reach observe&
;; Compute weights
;; Use weights to subselect continuations to call
;; Call K sampled continuations (often multiple times)
)

(defn predict& [label value k]

;; Store predict, and call continuation
(store! label value)

(k))

(defn flip-query& [outcome k1]

(uniform-continuous& 0 1

(fn [dist1]

(sample& dist1

(fn [p] ((fn [p k2]

(flip& p

(fn [dist2]

(observe& dist2 outcome

(fn []

(predict& :p p k2))))))

p k1))))))

(flip-query& true terminate)

(defn weighted-sample [query&]

(init-backend!)

(query& terminate)

[(:predicts @backend) (:log-weight @backend)])

(weighted-sample flip-query-true&)

10.6

And then talk about implementation, from transformation compilation to prob.-c to An-
glican style with brooks’ prob.-c and how to get "the same" via CPS transformation
and compilation to a pure functional language – this works because of datastructures.
mention massive parallelism automatically.
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LMH Backend

WOOD GROUP

LMH Sketch

(defn sample& [a dist k]

(let [;; reuse previous value,
;; or sample from prior
x (or (get-cache a)

(sample dist))]

;; add to log-weight when reused
(when (get-cache a)

(add-log-weight! (observe dist x)))

;; store value and its log prob in trace
(store-in-trace! a x dist)

;; continue with value x
(k x)))

(defn observe& [dist value k]

;; Compute and record the log weight
(add-log-weight! (observe dist value))

;; Call the continuation with no arguments
(k))

(defn mh-transition [prog args state]

(let [trace (get-trace state)

;; pick an entry and resample from prior
[a [x-old dist]] (rand-nth trace)

x-new (sample dist)

;; re-execute to get new state
forward (exec :lmh

prog args

(set-cache empty-state

(dissoc trace a)))

;; reconstruct state for reverse transition
backward (reverse-transition

proposal state)

log-accept (+ (- (get-log-weight forward)

(get-log-weight backward))

(- (log (count (get-trace backward)))

(log (count (get-trace forward)))))]

;; accept or reject
(if (< (log (rand)) log-accept)

forward

state)))
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LMH Variants

"Venture: a higher-order probabilistic programming platform with programmable inference."  
V. Mansinghka, D. Selsam, and Y. Perov. arXiv:1404.0099 (2014).

 "C3: Lightweight Incrementalized MCMC for Probabilistic Programs using Continuations and Callsite Caching."  
D. Ritchie, A. Stuhlmuller, and N. D. Goodman. arXiv:1509.02151 (2015).

D. Wingate, A. Stuhlmueller, and N. D. Goodman.  
"Lightweight implementations of probabilistic programming languages via transformational compilation." AISTATS (2011).
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Add Hill Climbing

• PMCMC = MH with SMC 
proposals, e.g. 
- PIMH : “particle 

independent Metropolis-
Hastings” 

- PGIBBS : “iterated 
conditional SMC”
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Andrieu, Doucet, Holenstein “Particle Markov chain Monte Carlo methods.“ JRSSB 2010



Blockwise Anytime Algorithm
• PIMH is MH that accepts entire 

new particle sets w.p. 

• Each SMC sweep computes 
marginal likelihood estimate 

• And all particles can be used

WOOD GROUP

likelihood estimate ˆZ?. The new candidate set of particles is accepted according to a
probability

↵s
PIMH = min

 
1,

ˆZ?

ˆZs�1

!
. (136)

If accepted, then the next particle set and next marginal likelihood estimate is set to the
proposed values; otherwise, the values from the previous iteration s � 1 are repeated.
In estimating expectations, the full set of particles can be used, with

ˆEPIMH [Q(x)] =

1

S

SX

s=1

KX

k=1

W s,kQ(x

s,k
). (137)

Formal correctness of the PIMH algorithm is shown by considering it as a standard
independent MH algorithm on an extended space of both the program traces, and the
ancestor indices.

One obvious advantage of this algorithm is its anytime nature: running a single
SMC iteration yields a K-sample approximation to the posterior, and then for each
s = 1, 2, . . . we have s ⇥ K total samples. As we collect more and more samples,
we see a corresponding reduction in error for estimates of posterior expectations. An
alternative scheme can be constructed by replacing the MH accept-reject step with an
additional importance weighting step; this can be understood as Rao-Blackwellizing
over the accept-reject step. That is, we could run an algorithm in which we iteratively
generate S particle sets; for each particle set {xs,k,W s,k}K

k=1 we can assign an ad-
ditional (unnormalized) weight ˆZs. This iterated SMC estimator can then be defined
using the normalized weights V s

S after S particle sets have been generated, with

V s
S =

ˆZs

PS
t=1

ˆZt
(138)

ˆEiSMC [Q(x)] =

SX

s=1

V s
S

KX

k=1

W s,kQ(x

s,k
). (139)

The iterated SMC estimator combines the multiple executions of SMC via importance
sampling, rather than MCMC. Consistency of such an estimator can be shown formally
by characterization of this algorithm as a form of ↵-SMC (?).

10.4.1 ADVANCED PARTICLE MCMC METHODS

Potentially more interesting algorithms can be uncovered by considering other sam-
plers which target the same extended space. In particular, the conditional SMC algo-
rithm re-runs SMC repeatedly in a dependent manner. It is initialized with a single SMC
run, in the same manner as PIMH. However, in subsequent MCMC iterations, a Gibbs
step is taken. After the first SMC run, we sample a single execution trace ˜

x

s,k
1:N which
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The approximation we can compute through the unnormalized weights at each resam-
pling point (i.e. at each observe) given by

ˆZ =

NY

n=1

ˆZn =

NY

n=1

1

K

KX

k=1

w(˜xk
1:n) (145)

is known to be unbiased (?).

10.4 Particle MCMC algorithms

Particle MCMC algorithms use sequential Monte Carlo as a proposal distribution within
an MCMC algorithm. The most basic application of particle MCMC to probabilistic pro-
grams is the particle independent Metropolis-Hastings algorithm. In this algorithm, we
initialize an MCMC sampler by running SMC with K particles to create an initial set of
K weighted execution traces {x0,k,W 0,k}K

k=1 and compute its marginal likelihood esti-
mate ˆZ0 according to Equation ?? Then, for s = 1, 2, . . . , we run a new SMC sampler
to propose a candidate set of execution traces {x?,k,W 0,k}K

k=1 with associated marginal
likelihood estimate ˆZ?. The new candidate set of particles is accepted according to a
probability

↵s
PIMH = min

 
1,

ˆZ?

ˆZs�1

!
. (146)

If accepted, then the next particle set and next marginal likelihood estimate is set to the
proposed values; otherwise, the values from the previous iteration s � 1 are repeated.
In estimating expectations, the full set of particles can be used, with

ˆEPIMH [Q(x)] =

1

S

SX

s=1

KX

k=1

W s,kQ(x

s,k
). (147)

Formal correctness of the PIMH algorithm is shown by considering it as a standard
independent MH algorithm on an extended space of both the program traces, and the
ancestor indices.

One obvious advantage of this algorithm is its anytime nature: running a single
SMC iteration yields a K-sample approximation to the posterior, and then for each
s = 1, 2, . . . we have s ⇥ K total samples. As we collect more and more samples,
we see a corresponding reduction in error for estimates of posterior expectations. An
alternative scheme can be constructed by replacing the MH accept-reject step with an
additional importance weighting step; this can be understood as Rao-Blackwellizing
over the accept-reject step. That is, we could run an algorithm in which we iteratively
generate S particle sets; for each particle set {xs,k,W s,k}K

k=1 we can assign an ad-
ditional (unnormalized) weight ˆZs. This iterated SMC estimator can then be defined
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Paige and Wood “A Compilation Target for Probabilistic Programming Languages” ICML 2014



PMCMC For Probabilistic Programming Inference

81
Wood, van de Meent, Mansinghka “A new approach to probabilistic programming inference” AISTATS 2014



SMC in LDS slowed down for clarity

Remove Synchronization



Asynchronously  

- simulate  
- weight  
- branch

n = 1 n = 2

Particle Cascade

Paige, Wood, Doucet, Teh “Asynchronous Anytime Sequential Monte Carlo” NIPS 2014



Particle Cascade



Shared Memory Scalability: Multiple Cores

85



Distributed SMC

I For each MCMC iteration r = 1, 2, . . .

1. Nodes c
j

2 {1, . . . ,M}, j = 1, . . . , P run CSMC, the rest run SMC

2. Each node m returns a marginal likelihood estimate ˆ

Z

m

and
candidate retained particle x0

1:T,m

3. A loop of Gibbs updates is applied to the retained particle indices:

P(c
j

= m|c
1:P\j) =

ˆ

Z

m

1
m/2c

1:P\jP
M

n=1

ˆ

Z

n

1
n/2c

1:P\j

(3)

4. The retained particles for the next iteration are set x0
1:T,j

[r] = x

0
1:T,c

j

MCMC Iteration, r
2 4 6 8 10 12 14 16 18 20

N
od

es

Rainforth, Naesseth, Lindsten, Paige, van de Meent, Doucet,  Wood, “Interacting Particle Markov Chain Monte Carlo” ICML 2016

iPMCMC



CSMC Exploitation / SMC Exploration
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Inference Backends in Anglican
• 14+ algorithms 
• Average 165 lines of code per! 
• Can implement and use without touching core 

code base. 

88

Algorithm Type Lines of 
Code Citation Description

smc IS 127 Wood et al. AISTATS, 2014 Sequential Monte Carlo

importance IS 21 Likelihood weighting

pcascade IS 176 Paige et al., NIPS, 2014 Particle cascade: Anytime asynchronous sequential Monte 
Carlo

pgibbs PMCMC 121 Wood et al. AISTATS, 2014 Particle Gibbs (iterated conditional SMC)

pimh PMCMC 68 Wood et al. AISTATS, 2014 Particle independent Metropolis-Hastings

pgas PMCMC 179 van de Meent et al., AISTATS, 
2015

Particle Gibbs with ancestor sampling

lmh MCMC 177 Wingate et al., AISTATS, 2011 Lightweight Metropolis-Hastings

ipmcmc MCMC 193 Rain forth et al., ICML, 2016 Interacting PMCMC

almh MCMC 320 Tolpin et al., ECML PKDD, 2015 Adaptive scheduling lightweight Metropolis-Hastings

rmh* MCMC 319 - Random-walk Metropolis-Hastings

palmh MCMC 66 - Parallelised adaptive scheduling lightweight Metropolis-
Hastings

plmh MCMC 62 - Parallelised lightweight Metropolis-Hastings

bamc MAP 318 Tolpin et al., SoCS, 2015 Bayesian Ascent Monte Carlo

siman MAP 193 Tolpin et al., SoCS, 2015 MAP estimation via simulated annealing



What Next?



Commercial Impact

90

INVREA
Make Better Decisions

https://invrea.com/plugin/excel/v1/download/



Symbolic Inference via Program Transformations

• Automated program transformations that simplify or 
eliminate inference (moving observes up and out)

A TUTORIAL ON PROBABILISTIC PROGRAMMING

why not a new page

(defquery beta-bernoulli [observation]

(let [dist (beta 1 1)

theta (sample dist)

like (flip theta)]

(observe like observation)

(predict :theta theta)))

(defquery beta-bernoulli [observation]

(let [dist (beta

(if observation 2 1)

(if observation 1 2))

theta (sample dist)]

(predict :theta theta)))
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Carette and Shan. “Simplifying Probabilistic Programs Using Computer Algebra⋆.” T.R. 719, Indiana University (2015) 
Yang - Keynote Lecture, APLAS (2015)

“Automatic Rao-Blackwellization”



Exact Inference via Compilation

variable elimination to compute

A TUTORIAL ON PROBABILISTIC PROGRAMMING

z and what is in ⌧ is a fluid engineering choice, although we most often think of be-
ing generative all the way down meaning that ⌧ consists of constants and the model
structural denotation only.

Let z be a random variable that takes values from Z . Ultimately we are going to be
interested in answering questions Q(·) via an integration of the following form

E[Q(z)] =

Z
Q(z)p(z|⌧)�

z

0=y

(z)dz

where z

0 ⇢ z is a subset of z whose values are known and take values y. The function
�
z

0=y

(z) is the Dirac distribution with positive mass only where a subset z

0 ⇢ z of the
dimensions of Z take given values y. We will intentionally override notation and use
y to simultaneously denote the z

0 ⇢ z that are “observed” and the values they take.
Note that Q(z) is the question, which for instance could be “What’s the probability that
x17 < 4?” ! Q(z) = I(x17 < 4), etc.

If we also abuse notation and define x to be the subset of random variables z

whose values aren’t fixed, i.e. x = {z\y} then we can simplify and denote Eqn. 1 more
conventionally

E[Q(z)] =

Z
Q(z)p(x|y, ⌧)dx. (2)

E[Q(x,y)] =

Z
Q(x,y)p(x|y)dx. (3)

E[Q(x)] =

Z
Q(x)p(x|y)dx. (4)

Q(x) = I((rigfell? x) = true) (5)

Q(x) = I((eq? x ‘V4XBG’) = true) (6)

The issue, as always, is that the posterior distribution p(x|y, ⌧) is difficult to char-
acterize in general. To see this (and dropping ⌧ for notation convenience because it
appears in every term) note that the denominator, called the “evidence,” in

p(x|y) = p(x,y)

p(y)
=

p(x,y)R
p(x,y)dx

p(x|y) = p(x,y)

p(y)
=

p(x,y)R
p(x,y)dx

=

p(y|x)p(x)R
p(y|x)p(x)dx

p(x|y) = p(x,y)

p(y)
=

p(x,y)R
p(x,y)dx

is analytic only in special cases and otherwise is usually computationally intractable
(i.e. requires exponential time to compute). We will use the shorthand �(x) = p(x,y)
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exactly

(defquery simple []
  (def y (sample (flip 0.5)))
  (def z (if y (dirac 0) (dirac 1)))
  (observe z 0)
  y)
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Overview

We wish to do exact inference on Anglican [5] models such as
Program 1, which contains only discrete random variables and
has a finite unrolled control flow graph.
(defquery simple []
(def y (sample (flip 0.5)))
(def z (if y (dirac 0) (dirac 1)))
(observe z 0)
(predict y))

Prog. 1: A simple program amenable to exact inference

Our method intelligently explores program execution traces in
order to construct the equivalent graphical model shown in Fig-
ure 1, which we then use to do exact inference via variable elim-
ination [6].

x1 ⇠ �0.5

x2 ⇠ �Jflip x1K

x3 ⇠ P

x2

x4 ⇠ �0

x5 ⇠ �Jdirac x4K

x6 ⇠ �1

x7 ⇠ �Jdirac x6K

x8 ⇠ �

if(x3,x5,x7) x9 ⇠ �0

x10 ⇠ �J= x8 x9K

Fig. 1: Graphical model equivalent to Program 1, where the gray node x10 is observed as
having value true, and the blue node x3 is our desired posterior

Figure 1 introduces some notation that will be used later:

• �

w

denotes a Dirac distribution centered on w

• JMK denotes the result of (deterministically) evaluating M ac-
cording to Clojure semantics

• P

x

denotes the distribution corresponding to the Anglican
distribution object x

Approach

We implement an evaluator for Anglican code that explores
possible program execution traces while keeping track of a de-
pendency graph between intermediate values. To ensure the
graphical model we produce is discrete and finite, we terminate
in error if we discover a continuous random variable or if our
graph exceeds a certain threshold size; we may fall back to us-
ing an approximate inference method in this case instead. Oth-
erwise, our evaluator will produce a discrete graphical model
that is amenable to inference via variable elimination; our im-
plementation makes use of the Figaro [2] system to perform this
final step.

Evaluator semantics

We now describe the semantics of our evaluator, which aims to
convert Anglican code into an equivalent graphical model. We
denote the state of execution by

⌃ = h⌘, ↵, �,  , ', !, ⇡i ,

where:

• ⌘ is the current environment

• ↵ is the address of the currently active frame in ⌘

• � is a directed graph

•  maps nodes to an overapproximation of their supports

• ' maps nodes to their conditional distributions

• ! is a set of nodes observed has having value true

• ⇡ is the node we wish to predict

When we encounter observe and predict statements, we up-
date ! and ⇡ in the obvious way. Big-step semantics for the
most important remaining Anglican expressions below are pro-
vided below. Note that at each step the components of ⌃ do not
change unless otherwise stated.

Constants and lambdas

For L any literal number, boolean, etc.

hL, ⌃0i + hxnew, ⌃1i
,

where
 1 =  0 [xnew 7! {w}] ,

and w = L, and �1 and '1 are as shown in figure Figure 2. A
similar rule applies for L a lambda expression, except that xnew
is Dirac on the closure w = [L, ↵0].

�0

xnew ⇠ �

w

Fig. 2: �1 and '1

Samples

We evaluate sample statements via:
hM, ⌃0i + hx1, ⌃1i

hsample M, ⌃0i + hxnew, ⌃2i
where �2 and '2 are as shown in Figure 3, and

 2 =  1

2

4
xnew 7!

[

�2 1(x1)
S (�)

3

5
,

where S (�) gives the support of the distribution correspond-
ing to the Anglican distribution object �.

�1

. . .

x1

xnew ⇠ P

x1

Fig. 3: �2 and '2

Primitive applications

For f any first-order operator:
hN

i

, ⌃
i�1i + hx

i

, ⌃
i

i , 1  i  k

hf N1 · · · N
k

, ⌃0i + hxnew, ⌃
k+1i

,

where �
k+1 and '

k+1 are as shown in Figure 4, and

 

k+1 =  

k

2

4
xnew 7! f

0

@
Y

1ik

 

k

(x
i

)

1

A

3

5
. (1)

�

k

. . .

x1 . . .

. . .

x

k

xnew ⇠ �Jf x1 · · · x

k

K

Fig. 4: �
k+1 and '

k+1

Compound applications

We evaluate compound applications via:
hM, ⌃0i + hx1, ⌃1i

hN
i

, ⌃
i

i + hx
i+1, ⌃i+1i , 1  i  k

 1(x1) =
�⇥
fn [y1 · · · y

k

] P
i

, ↵

⇤
i

⇤ �� 1  i  `

 
⌦
P
i

, ⌃
k+i

↵
+ hx

k+i+1, ⌃k+i+1i , 1  i  `

hM N1 · · · N
k

, ⌃0i + hxnew, ⌃
k+`+2i

,

where for each 1  i  `,

↵

k+i = ↵new
⌘

k+i(↵new) = ⌘

k+i(↵
⇤
i

) [y1 7! x2, . . . , y
k

7! x

k+1] .

Here �
k+`+2 and '

k+`+2 are as shown in Figure 5, and

↵

k+`+2 = ↵0
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k+`+1

2

4
xnew 7!

k+`+1[

i=k+2
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(x
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)
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x
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x

k+`+1

xnew ⇠ �proj
x1
(x

k+2,...,xk+`+1)

Fig. 5: �
k+`+2 and '

k+`+2; here proj
x1
(x

k+2, . . . , xk+`+1) projects onto the argument x
i

such
that x1 = [fn [y1, . . . , yn] P

i

, ↵

⇤
i

]

If statements

In order to avoid deterministic recursion (such as in Program 3),
we use multiple rules to evaluate if statements according to
the support of its predicate. In particular, we use

hP, ⌃0i + hx1, ⌃1i false /2  1(x1)
hM, ⌃1i + hx2, ⌃2i

hif P M N, ⌃0i + hx2, ⌃2i

and the symmetric rule for when true /2  1(x1); and, for the
general case,

hP, ⌃0i + hx1, ⌃1i true, false 2  1(x1)
hM, ⌃1i + hx2, ⌃2i hN, ⌃2i + hx3, ⌃3i

hif P M N, ⌃0i + hxnew, ⌃4i
,

where we in e�ect now consider the if to be a primitive appli-
cation and obtain �4, '4, and  4 as in (1) and Figure 4 above.

Bayes Net

We consider the simple Bayes net in Program 2, for which our
method correctly returns

P (is-raining = true) = 0.3

P (is-raining = false) = 0.7.

We compare our runtime performance with approximate in-
ference via SMC in Figure 6.
(defquery bayes-net [sprinkler wet-grass]
(let [is-cloudy (sample (flip 0.5))

is-raining (if (= is-cloudy true)
(sample (flip 0.8))
(sample (flip 0.2)))

sprinkler-dist (if (= is-cloudy true)
(flip 0.1)
(flip 0.5))

wet-grass-dist (cond
(and (= sprinkler true) (= is-raining true))
(flip 0.99)

(and (= sprinkler false) (= is-raining false))
(flip 0.0)

:else
(flip 0.9))]

(observe sprinkler-dist sprinkler)
(predict is-raining)))

Prog. 2: A simple Bayes Net

Fig. 6: Comparison with SMC using 100 particles

Schelling Coordination Game

Program 3 contains an Anglican version of the Schelling co-
ordination game implementation from [4]. When run with
depth = 4, we correctly return

P ((bob depth) = :good-bar) = 0.97465

P ((bob depth) = :bad-bar) = 0.02535.

We compare our runtime performance with approximate in-
ference via SMC in Figure 7.
(defquery schelling-coordination-game [depth]
(def location-dist (categorical {:good-bar 0.6

:bad-bar 0.4}))

(def alice (fn [depth]
(let [alice-location (sample location-dist)]
(observe (dirac alice-location)

(bob (dec depth)))
alice-location)))

(def bob (fn [depth]
(let [bob-location (sample location-dist)]
(if (> depth 0)
(observe (dirac bob-location) (alice depth)))

bob-location)))

(predict (bob depth)))

Prog. 3: Schelling Coordination Game

Fig. 7: Comparison with SMC using 100 particles for depth = 4
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Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
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for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N ). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.
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a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
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sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation
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Wk�xk(x) Wk =
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Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 4 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (5)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (6)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (7)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
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estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.
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The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
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q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 4 under p(y), suggesting an objective function J (⌘) defined as
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Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
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Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
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The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
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This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)
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Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
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explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
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distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
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r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
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Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 4 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (5)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (6)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (7)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
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Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) = p(x|y) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

argmin
⌘

Ep(y)

⇥
DKL(⇡||q'(⌘,y))

⇤
(5)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
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Averaging over   
all possible 
datasets:

fit λ to learn an importance 
sampling proposal

learn a mapping from 
arbitrary datasets to λ

…compiles away runtime
costs of inference!



Compiled Inference Results
Inference Networks for Sequential Monte Carlo in Graphical Models

Figure 4. Representative output in the polynomial regression example. Plots show 100 samples each at 5% opacity, with the mean marked
as a solid dashed line. These are all proposed using the same pre-trained neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples by a factor 100, after 10000 samples of
burnin. The neural network proposal yields estimated polynomial curves close to the true posterior solution, albeit slightly more diffuse.

for fixed ⌫ = 4, ✏ = 1, and z

n

2 (�10, 10) uniformly. The
goal is to estimate the posterior distribution of weights for
the constant, linear, and quadratic terms, given any possible
collected dataset {z

n

, t

n

}N
n=1. In the notation of the pre-

ceding sections, we have latent variables x ⌘ {w0, w1, w2}
and observed variables y ⌘ {z

n

, t

n

}N
n=1.

Note particularly that although the original graphical model
which expressed p(y|x)p(x) factorizes into products over
y

n

which are conditionally independent given x, in the
inverse model p̃(x|y) due to the explaining-away phe-
nomenon all latent variables depend on all others: there
are no latent variables which can be d-separated from the
observed y, and all latent variables share y as parents.
This means we fit as proposal only a single joint density
q(w0:2|z1:N , t1:N ). Examples of representative output from
this network are shown in Figure 4. The trained network
used here 200 hidden units in each of two hidden layers, and
a mixture of 3 Gaussians as each output.

4.2. A hierarchical Bayesian model

Consider as a new example a representative multilevel
model where exact inference is intractable, a Poisson model
for estimating failure rates of power plant pumps (George
et al., 1993). Given N power plant pumps, each having
operated for t

n

thousands of hours, we see x

n

failures, fol-
lowing

↵ ⇠ Exponential(1.0), � ⇠ Gamma(0.1, 1.0),

✓

n

⇠ Gamma(↵,�), y

n

⇠ Poisson(✓

n

t

n

).

The graphical model, an inverse factorization, and the neural
network structure are shown in Figure 2. To generating syn-
thetic training data, t

n

are sampled iid from an exponential
distribution with mean 50.

The repeated structure in the inverse factorization of this
model allows us to learn a single inverse factor to represent
the distribution p̃(✓

n

|t
n

, y

n

) across all n. This yields a far

Paige, Wood “Inference Networks for Sequential Monte Carlo in Graphical Models” ICML (2016).
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+ inference =+ data =

Supervised Unsupervised

• Needs lots of labeled data 
• Training is slow 
• Uninterpretable model 
• Fast at test time

• Needs only unlabeled data 
• No training 
• Interpretable Model 
• Slow at test time
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• Needs only unlabeled data 
• Slow training 
• Interpretable model 
• Fast at test time



HOPPL Compiled Inference

98

p(letters | captcha)

Compiled sequential 
importance sampling

1 particle

Sequential 
Monte Carlo
10k particles

Lightweight 
Metropolis-Hastings

10k iterations

num-‐letters	  =	  5	  
…	  

letters	  =	  “gtRai”

num-‐letters	  =	  4	  
…	  

letters	  =	  “dF6D”

num-‐letters	  =	  6	  
…	  

letters	  =	  “q5ihGt”

Compiled inference Classical inference

1) Compilation (1 day) 2) Inference (1 second)
(defquery	  captcha	  [baseline-‐image]	  
	  	  (let	  [num-‐letters	  (sample	  (u-‐d	  4	  7))	  
	  	  	  	  	  	  	  	  x-‐offset	  (sample	  (u-‐d	  min-‐x	  max-‐x))	  
	  	  	  	  	  	  	  	  y-‐offset	  (sample	  (u-‐d	  min-‐y	  max-‐y))	  
	  	  	  	  	  	  	  	  distort-‐x	  (sample	  (u-‐d	  8	  15))	  
	  	  	  	  	  	  	  	  distort-‐y	  (sample	  (u-‐d	  8	  15))	  
	  	  	  	  	  	  	  	  kerning	  (sample	  (u-‐d	  -‐1	  3))	  
	  	  	  	  	  	  	  	  letter-‐ids	  (repeatedly	  num-‐letters	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  #(sample	  (u-‐d	  0	  dict-‐size)))	  
	  	  	  	  	  	  	  	  letters	  (get-‐letters	  letter-‐ids)	  

	  	  	  	  	  	  	  	  rendered-‐image	  (render	  letters	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  x-‐offset	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  y-‐offset	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  kerning	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  distort-‐x	  	  
	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  distort-‐y)]	  
	  	  	  	  ;;	  ABC-‐style	  observe	  
	  	  	  	  (observe	  (abc-‐dist	  rendered-‐image	  abc-‐sigma)	  
	  	  	  	  	  	  	  	  	  	  	  	  	  baseline-‐image)	  
	  	  	  	  (predict	  :letters	  letters)))

{x, y}

Probabilistic
program

Training
data

Dynamically
assembled

RNN

Trained
RNN weights

1) Inference (20 minutes)

Le, Baydin, Wood “Inference Compilation and Universal Probabilistic Programming” in prep 2016
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policy and world observations and rewards

simulator constraints
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Where We Stand
• Probabilistic programming concept 

• Long well established 

• Tool maturity 
• Homework 
• Prototyping 
• Research 
• Advanced research 
• Small real-world applications 

• Put-offs 
• Some highly optimized models that you know to scale 

well don’t necessarily scale well in current probabilistic 
programming systems. 101



Deterministic Simulation and Other Libraries
(defquery arrange-bumpers []
    (let [bumper-positions []

          ;; code to simulate the world
          world (create-world bumper-positions)
          end-world (simulate-world world)
          balls (:balls end-world)

          ;; how many balls entered the box?
          num-balls-in-box (balls-in-box end-world)]

      {:balls balls
       :num-balls-in-box num-balls-in-box
       :bumper-positions bumper-positions}))

goal: “world” that puts ~20% of balls in box… 



(defquery arrange-bumpers []
    (let [number-of-bumpers (sample (poisson 20))
          bumpydist (uniform-continuous 0 10)
          bumpxdist (uniform-continuous -5 14)
          bumper-positions (repeatedly
                            number-of-bumpers
                            #(vector (sample bumpxdist) 
                                     (sample bumpydist)))

          ;; code to simulate the world
          world (create-world bumper-positions)
          end-world (simulate-world world)
          balls (:balls end-world)

          ;; how many balls entered the box?
          num-balls-in-box (balls-in-box end-world)]

      {:balls balls
       :num-balls-in-box num-balls-in-box
       :bumper-positions bumper-positions}))

Open Universe Models and Nonparametrics



(defquery arrange-bumpers []
    (let [number-of-bumpers (sample (poisson 20))
          bumpydist (uniform-continuous 0 10)
          bumpxdist (uniform-continuous -5 14)
          bumper-positions (repeatedly
                            number-of-bumpers
                            #(vector (sample bumpxdist) 
                                     (sample bumpydist)))

          ;; code to simulate the world
          world (create-world bumper-positions)
          end-world (simulate-world world)
          balls (:balls end-world)

          ;; how many balls entered the box?
          num-balls-in-box (balls-in-box end-world)
          
          obs-dist (normal 4 0.1)]

      (observe obs-dist num-balls-in-box)
      
      {:balls balls
       :num-balls-in-box num-balls-in-box
       :bumper-positions bumper-positions}))

Conditional (Stochastic) Simulation
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Postdoc Openings
• 2 probabilistic programming postdoc openings

https://goo.gl/US3b42

Let’s Go!  : Anglican Installation


