
Introduction to
Generative Modeling

Brooks Paige

• Generative view: a model is a simulator

• What is “understanding”?

• If you are able to simulate a system, then you
understand the system

What is a model?

Generative model for curve fitting

Draw a line “through” these points

• Goal of curve fitting / regression tasks: estimate a
function f(x) with y = f(x) + noise

• Question: how do we  
“generate” a line?

• y = a + bx + noise

1. choose an intercept

2. choose a slope

3. add in noise

Generative model for curve fitting

x

f(x
)

• Define a joint probability distribution p(a, b, noise)

• “Good” sets of latent  
variables are those  
which well simulate  
the data

• y = a + bx + noise

1. choose an intercept

2. choose a slope

3. add in noise

Generative model for curve fitting

x

f(x
)

• Define a joint probability distribution p(a, b, noise)

• “Good” sets of latent  
variables are those  
which well simulate  
the data

• y = a + bx + noise

1. choose an intercept

2. choose a slope

3. add in noise

Generative model for curve fitting

x

f(x
)

• Define a joint probability distribution p(a, b, noise)

• “Good” sets of latent  
variables are those  
which well simulate  
the data

• y = a + bx + noise

1. choose an intercept

2. choose a slope

3. add in noise

Generative model for curve fitting

x

f(x
)

• Define a joint probability distribution p(a, b, noise)

• “Good” sets of latent  
variables are those  
which well simulate  
the data

• y = a + bx + noise

1. choose an intercept

2. choose a slope

3. add in noise

Generative model for curve fitting

x

f(x
)

• Define a joint probability distribution p(a, b, noise)

• “Good” sets of latent  
variables are those  
which well simulate  
the data

• y = a + bx + noise

1. choose an intercept

2. choose a slope

3. add in noise

Generative model for curve fitting

x

f(x
)

• Define a joint probability distribution p(a, b, noise)

• “Good” sets of latent  
variables are those  
which well simulate  
the data

• y = a + bx + noise

1. choose an intercept

2. choose a slope

3. add in noise

Generative model for curve fitting

x

f(x
)

• Define a joint probability distribution p(a, b, noise)

• “Good” sets of latent  
variables are those  
which well simulate  
the data

• y = a + bx + noise

1. choose an intercept

2. choose a slope

3. add in noise

Generative model for curve fitting

x

f(x
)

• A generative model specifies how to simulate what
we see (i.e. the data), as well as what we don’t see
(latent variables or parameters)

• If we have a generative model, we can answer
questions (or “test hypotheses”) using Bayes’ rule:

Generative models and Bayes’ rule

p(hypothesis | data) = p(data | hypothesis) p(hypothesis)
p(data)

• Our generative model for a line: p(f) defined a
probability distribution over linear functions

• We simulated from the generative model by
sampling a slope and an intercept, and then
adding noise

• What if we want to sample more interesting
functions?

Generative model for curve fitting

• Polynomial functions:

• First, choose (sample)
degree of polynomial D
from some distribution
over positive integers

• Then, choose (sample)
values for each of the
D+1 different
coefficients

Generative model for curve fitting

f (x) = w0 +
DX

i=1

w

i

x

i

x

f(x
)

• Polynomial functions:

• First, choose (sample)
degree of polynomial D
from some distribution
over positive integers

• Then, choose (sample)
values for each of the
D+1 different
coefficients

Generative model for curve fitting

f (x) = w0 +
DX

i=1

w

i

x

i

x

f(x
)

• Polynomial functions:

• First, choose (sample)
degree of polynomial D
from some distribution
over positive integers

• Then, choose (sample)
values for each of the
D+1 different
coefficients

Generative model for curve fitting

f (x) = w0 +
DX

i=1

w

i

x

i

x

f(x
)

• Polynomial functions:

• First, choose (sample)
degree of polynomial D
from some distribution
over positive integers

• Then, choose (sample)
values for each of the
D+1 different
coefficients

Generative model for curve fitting

f (x) = w0 +
DX

i=1

w

i

x

i

x

f(x
)

• One view of a function:  

• Another view of a function:  
 
 
 
 

• Generative model for source code: actually fairly
easy to write down for Clojure code!  

Why restrict to “math” functions at all?

(defn factorial
 "computes n * (n-‐1) * ... * 1"
 [n]
 (if (= n 1)
 1
 (*' n (factorial (-‐ n 1)))))

f (x) = w0 +
DX

i=1

w

i

x

i

Generative model for arithmetic functions

Functions of one variable x

‣ Primitive operations:

‣ Terminal symbols:

‣ Simple and compound
expressions: 

‣ Functions:  

e! sym
e! (op e e)

op 2 {+,�,⇥,÷}

sym 2 {x , 0, . . . , 9}

(fn [x] (op e e))

Generative model for arithmetic functions
(def operations ['+ '-‐ '* '/])
!
(defm gen-‐operation []
 (get operations
 (sample (uniform-‐discrete 0 (count operations)))))

!
(defm gen-‐arithmetic-‐expression []
 (let [expression-‐type (sample (discrete [0.4 0.3 0.3]))]
 (cond (= expression-‐type 0) (sample (uniform-‐discrete 0 10))
 (= expression-‐type 1) 'x
 :else
 (let [operation (gen-‐operation)]
 (list operation
 (gen-‐arithmetic-‐expression)
 (gen-‐arithmetic-‐expression))))))
!
(defm gen-‐function []
 (list 'fn ['x]
 (list (gen-‐operation)
 (gen-‐arithmetic-‐expression)
 (gen-‐arithmetic-‐expression))))

Generative model for arithmetic functions
 (fn [x] (-‐ (/ (-‐ (* 7 0) 2) x) x))
 (fn [x] (-‐ x 8))
 (fn [x] (* 5 8))
 (fn [x] (+ 7 6))
 (fn [x] (* x x))
 (fn [x] (* 2 (+ 0 1)))
 (fn [x] (/ 6 x))
 (fn [x] (-‐ 0 (+ 0 (+ x 5))))
 (fn [x] (-‐ x 6))
 (fn [x] (* 3 x))
 (fn [x]
 (+
 (+
 2
 (-‐ (/ x x) (-‐ x (/ (-‐ (-‐ 4 x) (* 5 4)) (* 6 x)))))
 x))
 (fn [x] (-‐ x (+ 7 (+ x 4))))
 (fn [x] (+ (-‐ (/ (+ x 3) x) x) x))
 (fn [x] (-‐ x (* (/ 8 (/ (+ x 5) x)) (-‐ 0 1))))
 (fn [x] (/ (/ x 7) 7))
 (fn [x] (/ x 2))
 (fn [x] (* 8 x))
 (fn [x] (+ 3 (+ x 2)))

Generative model for arithmetic functions
;; A quoted string
'(fn [x] (-‐ x 8))
!
;; A function
(eval '(fn [x] (-‐ x 8)))
!
;; Calling the function at x=10 (outputs: 2)
((eval '(fn [x] (-‐ x 8))) 10)

Generative model for arithmetic functions

(fn [x] (+ 7 (-‐ (-‐ 0 x) x)))

(fn [x] (-‐ (-‐ 7 x) x))

(fn [x] (+ (-‐ 0 x) (-‐ 7 x)))

(fn [x] (-‐ 7 (+ x x)))

f (1) = 5 f (2) = 3 f (3) = 1

f (x) = 7� 2x

• What about a generative model for “natural”
language, instead of computer language?

• Classic generative model: hidden Markov model

• Goal: tag parts of speech, given text

Generative models for natural language

Part-of-speech tag:

Word: y1 y2

x1 x2 x3

y3

• What about a generative model for “natural”
language, instead of computer language?

• Brown corpus (1964, 1971, 1979):  
“A Standard Corpus of Present-Day Edited
American English, for use with Digital Computers.”

Generative models for natural language

Part-of-speech tag:

Word: y1 y2

x1 x2 x3

y3

• Estimating parts of speech (latent variables) given
new (untagged) text:

Generative models for natural language

The City Purchasing Department, the jury said , “ is lacking  

in experienced clerical personnel as a result of city 	

!
personnel policies ” .

 DET NOUN VERB NOUN . DET NOUN VERB . . VERB VERB
 

ADP VERB ADJ NOUN ADP DET NOUN ADP NOUN
!
!
 NOUN NOUN . .

Generative models for natural language

Why did the chicken cross the road?
ADV VERB DET NOUN VERB DET NOUN .

Why did the women cross the road ?
Why did the Race cross the road ?
Why did the people cross the road ?
Why did the control cross the road ?
Why did the image cross the road ?
Why did the areas cross the road ?
Why did the battle cross the road ?
Why did the catalogue cross the road ?
Why did the man cross the road ?
Why did the hands cross the road ?

Still nowhere close to generating
“real” text from scratch!

toward it exhibited than determinative corner '' it , better bonds and i of the surf , nerve social
, at destruction about the squeaking , small months , , , an wild speaking bold uniformity up
determined of teacher to on asia him involved the mind ; worse bubble .
!
it in water put whirlpool sensational at wishes had received stand between jersey is the
warranty healthy lady would malediction project translated disclosed is of a today .
!
a thing aspects .
!
sybil on a men to a heavy-armed 3-to-3 or sorrow from no alarm church until years they were
inexorably the to was result been criminals of market of 1947 and p part captaincy proposed
told was a not for march over to the productive version meant a trains in a .

A positive aspect of generative models:
straightforward to imagine how we can improve it!
(easy iteration over models)

“People learn to recognize and
draw simple visual concepts
(such as a letter in a foreign
alphabet) from only a few
examples, whereas machine
learning algorithms typically
require tens or hundreds of
examples.”

Generative models for visual concepts

Lake et al., 2015

Examples of handwritten characters

learning (4, 14–16), fitting a more complicated
model requires more data, not less, in order to
achieve some measure of good generalization,
usually the difference in performance between
new and old examples. Nonetheless, people seem
to navigate this trade-off with remarkable agil-
ity, learning rich concepts that generalize well
from sparse data.
This paper introduces the Bayesian program

learning (BPL) framework, capable of learning
a large class of visual concepts from just a single
example and generalizing in ways that are mostly
indistinguishable from people. Concepts are rep-
resented as simple probabilistic programs—that
is, probabilistic generative models expressed as
structured procedures in an abstract description
language (17, 18). Our framework brings together
three key ideas—compositionality, causality, and
learning to learn—that have been separately influ-
ential in cognitive science and machine learning
over the past several decades (19–22). As pro-
grams, rich concepts can be built “composition-
ally” from simpler primitives. Their probabilistic
semantics handle noise and support creative
generalizations in a procedural form that (unlike
other probabilistic models) naturally captures
the abstract “causal” structure of the real-world
processes that produce examples of a category.
Learning proceeds by constructing programs that
best explain the observations under a Bayesian
criterion, and themodel “learns to learn” (23, 24)
by developing hierarchical priors that allow pre-
vious experience with related concepts to ease
learning of new concepts (25, 26). These priors
represent a learned inductive bias (27) that ab-
stracts the key regularities and dimensions of
variation holding across both types of concepts
and across instances (or tokens) of a concept in a
given domain. In short, BPL can construct new
programs by reusing the pieces of existing ones,
capturing the causal and compositional proper-

ties of real-world generative processes operating
on multiple scales.
In addition to developing the approach sketched

above, we directly compared people, BPL, and
other computational approaches on a set of five
challenging concept learning tasks (Fig. 1B). The
tasks use simple visual concepts fromOmniglot,
a data set we collected of multiple examples of
1623 handwritten characters from 50 writing
systems (Fig. 2) (see acknowledgments). Both im-
ages and pen strokes were collected (see below) as
detailed in section S1 of the online supplementary
materials. Handwritten characters are well suited
for comparing human andmachine learning on a
relatively even footing: They are both cognitively
natural and often used as a benchmark for com-
paring learning algorithms. Whereas machine
learning algorithms are typically evaluated after
hundreds or thousands of training examples per
class (5), we evaluated the tasks of classification,
parsing (Fig. 1B, iii), and generation (Fig. 1B, ii) of
new examples in theirmost challenging form: after
just one example of a new concept. We also in-
vestigatedmore creative tasks that asked people and
computational models to generate new concepts
(Fig. 1B, iv). BPL was compared with three deep
learning models, a classic pattern recognition
algorithm, and various lesioned versions of the
model—a breadth of comparisons that serve to
isolate the role of each modeling ingredient (see
section S4 for descriptions of alternative models).
We compare with two varieties of deep convo-
lutional networks (28), representative of the cur-
rent leading approaches to object recognition (7),
and a hierarchical deep (HD) model (29), a prob-
abilistic model needed for our more generative
tasks and specialized for one-shot learning.

Bayesian Program Learning

The BPL approach learns simple stochastic pro-
grams to represent concepts, building them com-

positionally from parts (Fig. 3A, iii), subparts
(Fig. 3A, ii), and spatial relations (Fig. 3A, iv).
BPL defines a generative model that can sam-
ple new types of concepts (an “A,” “B,” etc.) by
combining parts and subparts in new ways.
Each new type is also represented as a genera-
tivemodel, and this lower-level generativemodel
produces new examples (or tokens) of the con-
cept (Fig. 3A, v), making BPL a generative model
for generative models. The final step renders
the token-level variables in the format of the raw
data (Fig. 3A, vi). The joint distribution on types
y, a set of M tokens of that type q(1), . . ., q(M),
and the corresponding binary images I (1), . . ., I (M)

factors as

Pðy; qð1Þ;…; qðMÞ; I ð1Þ;…; I ðMÞÞ

¼ PðyÞ
M

∏
m¼1

PðI ðmÞjqðmÞÞPðqðmÞjyÞ ð1Þ

The generative process for types P(y) and
tokens P(q(m)|y) are described by the pseudocode
in Fig. 3B and detailed along with the image
model P(I (m)|q(m)) in section S2. Source code is
available online (see acknowledgments). The
model learns to learn by fitting each condition-
al distribution to a background set of characters
from30 alphabets, using both the image and the
stroke data, and this image set was also used to
pretrain the alternative deep learning models.
Neither the production data nor any alphabets
from this set are used in the subsequent evalu-
ation tasks, which provide the models with only
raw images of novel characters.
Handwritten character types y are an abstract

schemaof parts, subparts, and relations.Reflecting
the causal structure of the handwriting process,
character parts Si are strokes initiated by pres-
sing the pendown and terminated by lifting it up
(Fig. 3A, iii), and subparts si1, ..., sini

are more
primitivemovements separated by brief pauses of

SCIENCE sciencemag.org 11 DECEMBER 2015 • VOL 350 ISSUE 6266 1333

Fig. 2. Simple visual concepts for comparing human and machine learning. 525 (out of 1623) character concepts, shown with one example each.

RESEARCH | RESEARCH ARTICLES

 o
n

Ju
ly

 1
9,

 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d

fr
om

Lake et al., 2015

the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).

RESEARCH | RESEARCH ARTICLES

 o
n

Ju
ly

 1
9,

 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d

fr
om

 Lake et al., 2015

Generative models for visual concepts

• Use the generative
model to ask
questions like 
 
“How did someone
draw this character?”  
 
“What strokes did they
use, in what order?”

the pen (Fig. 3A, ii). To construct a new character
type, first themodel samples the number of parts
k and the number of subparts ni, for each part
i = 1, ..., k, from their empirical distributions as

measured from the background set. Second, a
template for a part Si is constructed by sampling
subparts from a set of discrete primitive actions
learned from the background set (Fig. 3A, i),

such that the probability of the next action
depends on the previous. Third, parts are then
grounded as parameterized curves (splines) by
sampling the control points and scale parameters

1334 11 DECEMBER 2015 • VOL 350 ISSUE 6266 sciencemag.org SCIENCE

Fig. 3. A generative model of handwritten characters. (A) New types are generated by choosing primitive actions (color coded) from a library (i),
combining these subparts (ii) to make parts (iii), and combining parts with relations to define simple programs (iv). New tokens are generated by running
these programs (v), which are then rendered as raw data (vi). (B) Pseudocode for generating new types y and new token images I(m) for m = 1, ..., M. The
function f (·, ·) transforms a subpart sequence and start location into a trajectory.

Human parses Machine parsesHuman drawings

-505 -593 -655 -695 -723

-1794-646 -1276

Training item with model’s five best parses

Test items

1 2 3 4 5stroke order:

Fig. 4. Inferringmotor programs from images. Parts are distinguished
by color, with a colored dot indicating the beginning of a stroke and an
arrowhead indicating the end. (A) The top row shows the five best pro-
grams discovered for an image along with their log-probability scores
(Eq. 1). Subpart breaks are shown as black dots. For classification, each
program was refit to three new test images (left in image triplets), and
the best-fitting parse (top right) is shown with its image reconstruction
(bottom right) and classification score (log posterior predictive probability).
The correctly matching test item receives a much higher classification
score and is also more cleanly reconstructed by the best programs induced
from the training item. (B) Nine human drawings of three characters
(left) are shown with their ground truth parses (middle) and best model
parses (right).

RESEARCH | RESEARCH ARTICLES

 o
n

Ju
ly

 1
9,

 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d

fr
om

Lake et al., 2015

Generative models for visual concepts

A “visual Turing test”

for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate

SCIENCE sciencemag.org 11 DECEMBER 2015 • VOL 350 ISSUE 6266 1335

1 2

1 2

1 2

1 2

1 2

1 2

Human or Machine?

Fig. 5. Generating new exemplars. Humans and machines were given an image of a novel character
(top) and asked to produce new exemplars.The nine-character grids in each pair that were generated by
a machine are (by row) 1, 2; 2, 1; 1, 1.

RESEARCH | RESEARCH ARTICLES

 o
n

Ju
ly

 1
9,

 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d

fr
om

for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate

SCIENCE sciencemag.org 11 DECEMBER 2015 • VOL 350 ISSUE 6266 1335

1 2

1 2

1 2

1 2

1 2

1 2

Human or Machine?

Fig. 5. Generating new exemplars. Humans and machines were given an image of a novel character
(top) and asked to produce new exemplars.The nine-character grids in each pair that were generated by
a machine are (by row) 1, 2; 2, 1; 1, 1.

RESEARCH | RESEARCH ARTICLES

 o
n

Ju
ly

 1
9,

 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d

fr
om

for each subpart. Last, parts are roughly positioned
to begin either independently, at the beginning, at
the end, or along previous parts, as defined by
relation Ri (Fig. 3A, iv).
Character tokens q(m) are produced by execut-

ing the parts and the relations andmodeling how
ink flows from the pen to the page. First, motor
noise is added to the control points and the scale
of the subparts to create token-level stroke tra-
jectories S(m). Second, the trajectory’s precise start
location L(m) is sampled from the schematic pro-
vided by its relationRi to previous strokes. Third,
global transformations are sampled, including
an affine warp A(m) and adaptive noise parame-
ters that ease probabilistic inference (30). Last, a
binary image I (m) is created by a stochastic ren-
dering function, lining the stroke trajectories
with grayscale ink and interpreting the pixel
values as independent Bernoulli probabilities.
Posterior inference requires searching the large

combinatorial space of programs that could have
generated a raw image I (m). Our strategy uses fast
bottom-up methods (31) to propose a range of
candidate parses. The most promising candidates
are refined by using continuous optimization

and local search, forming a discrete approxima-
tion to the posterior distribution P(y , q(m)|I (m))
(section S3). Figure 4A shows the set of discov-
ered programs for a training image I (1) and
how they are refit to different test images I (2) to
compute a classification score log P(I (2)|I (1)) (the
log posterior predictive probability), where higher
scores indicate that they are more likely to be-
long to the same class. A high score is achieved
when at least one set of parts and relations can
successfully explain both the training and the
test images, without violating the soft constraints
of the learned within-class variability model.
Figure 4B compares the model’s best-scoring
parses with the ground-truth human parses for
several characters.

Results

People, BPL, and alternative models were com-
pared side by side on five concept learning tasks
that examine different forms of generalization
from just one or a few examples (example task
Fig. 5). All behavioral experiments were run
through Amazon’s Mechanical Turk, and the ex-
perimental procedures are detailed in section S5.

The main results are summarized by Fig. 6, and
additional lesion analyses and controls are re-
ported in section S6.
One-shot classification was evaluated through

a series of within-alphabet classification tasks for
10 different alphabets. As illustrated in Fig. 1B, i,
a single image of a new character was presented,
and participants selected another example of that
same character from a set of 20 distinct char-
acters produced by a typical drawer of that alpha-
bet. Performance is shown in Fig. 6A,where chance
is 95% errors. As a baseline, themodifiedHausdorff
distance (32) was computed between centered
images, producing 38.8% errors. People were
skilled one-shot learners, achieving an average
error rate of 4.5% (N = 40). BPL showed a similar
error rate of 3.3%, achieving better performance
than adeep convolutional network (convnet; 13.5%
errors) and the HDmodel (34.8%)—each adapted
from deep learning methods that have performed
well on a range of computer vision tasks. A deep
Siamese convolutional network optimized for this
one-shot learning task achieved 8.0% errors (33),
still about twice as high as humans or ourmodel.
BPL’s advantage points to the benefits ofmodeling
theunderlying causal process in learning concepts,
a strategy different from the particular deep learn-
ing approaches examined here. BPL’s other key
ingredients also make positive contributions, as
shown by higher error rates for BPL lesions
without learning to learn (token-level only) or
compositionality (11.0% errors and 14.0%, respec-
tively). Learning to learn was studied separately
at the type and token level by disrupting the
learned hyperparameters of the generativemodel.
Compositionality was evaluated by comparing
BPL to a matched model that allowed just one
spline-based stroke, resembling earlier analysis-
by-synthesis models for handwritten characters
that were similarly limited (34, 35).
The human capacity for one-shot learning is

more than just classification. It can include a suite
of abilities, such as generating new examples of a
concept. We compared the creative outputs pro-
duced by humans and machines through “visual
Turing tests,”where naive human judges tried to
identify the machine, given paired examples of
human and machine behavior. In our most basic
task, judges compared the drawings from nine
humans asked to produce a new instance of a
concept given one example with nine new ex-
amples drawn by BPL (Fig. 5). We evaluated each
model based on the accuracy of the judges, which
we call their identification (ID) level: Idealmodel
performance is 50% ID level, indicating that they
cannot distinguish the model’s behavior from
humans; worst-case performance is 100%. Each
judge (N = 147) completed 49 trials with blocked
feedback, and judges were analyzed individually
and in aggregate. The results are shown in Fig.
6B (new exemplars). Judges had only a 52% ID
level on average for discriminating human versus
BPL behavior. As a group, this performance was
barely better than chance [t(47) = 2.03, P = 0.048],
and only 3 of 48 judges had an ID level reliably
above chance. Three lesioned models were eval-
uated by different groups of judges in separate

SCIENCE sciencemag.org 11 DECEMBER 2015 • VOL 350 ISSUE 6266 1335

1 2

1 2

1 2

1 2

1 2

1 2

Human or Machine?

Fig. 5. Generating new exemplars. Humans and machines were given an image of a novel character
(top) and asked to produce new exemplars.The nine-character grids in each pair that were generated by
a machine are (by row) 1, 2; 2, 1; 1, 1.

RESEARCH | RESEARCH ARTICLES

 o
n

Ju
ly

 1
9,

 2
01

6
ht

tp
://

sc
ie

nc
e.

sc
ie

nc
em

ag
.o

rg
/

D
ow

nl
oa

de
d

fr
om

Lake et al., 2015

“Prove that you are a human!”

Captcha-breaking

Generative model for Captcha-breaking

Model for Characters

(defm sample-char []
 {:symbol (sample (uniform ascii))
 :x (sample (uniform-cont 0.0 1.0))
 :y (sample (uniform-cont 0.0 1.0))
 :scale (sample (beta 1 2))
 :weight (sample (gamma 2 2))
 :blur (sample (gamma 1 1))})

Target Image

(defquery captcha
 [image max-chars tol]
 (let [[w h] (size image)
 ;; sample random characters
 num-chars (sample
 (uniform-discrete
 1 (inc max-chars)))
 chars (repeatedly
 num-chars sample-char)]
 ;; compare rendering to true image
 (map (fn [y z]
 (observe (normal z tol) y))
 (reduce-dim image)
 (reduce-dim (render chars w h)))
 ;; output captcha text
 (map :symbol (sort-by :x chars)))))

Model for CAPTCHA ImageTarget Image

Samples from Program

Generative model for Captcha-breaking

(defquery captcha
 [image max-chars tol]
 (let [[w h] (size image)
 ;; sample random characters
 num-chars (sample
 (uniform-discrete
 1 (inc max-chars)))
 chars (repeatedly
 num-chars sample-char)]
 ;; compare rendering to true image
 (map (fn [y z]
 (observe (normal z tol) y))
 (reduce-dim image)
 (reduce-dim (render chars w h)))
 ;; output captcha text
 (map :symbol (sort-by :x chars))))))

Model for CAPTCHA ImageTarget Image

Samples from Program

Generative model for Captcha-breaking

Google street view house numbers

• We started with curve fitting — but when we went
through the process of fitting a curve to some data,
we actually went through an iterative process of
model generation, model refinement, model criticism

• Can we instead write down a generative model
which simulates the entire process of fitting a curve
to data?

Generative models for curve fitters

Generative models for curve fittersTHE AUTOMATIC STATISTICIAN

Data Search

Language of models

Evaluation

Model Prediction

Translation

Checking

Report

I An open-ended language of models
I Expressive enough to capture real-world phenomena. . .
I . . . and the techniques used by human statisticians

I A search procedure
I To efficiently explore the language of models

I A principled method of evaluating models
I Trading off complexity and fit to data

I A procedure to automatically explain the models
I Making the assumptions of the models explicit. . .
I . . . in a way that is intelligible to non-experts

(work with J. R. Lloyd, D.Duvenaud, R.Grosse, and J.B.Tenenbaum)Zoubin Ghahramani 16 / 24

Lloyd et al., 2014; Ghahramani 2015

Four additive components have been identified in the data:
‣ A linearly increasing function.
‣ An approximately periodic function with a period of 1.0 years

and with linearly increasing amplitude.
‣ A smooth function.
‣ Uncorrelated noise with linearly increasing standard deviation.

Generative models for curve fittersEXAMPLE: AN ENTIRELY AUTOMATIC ANALYSIS

Raw data

1950 1952 1954 1956 1958 1960 1962
100

200

300

400

500

600

700
Full model posterior with extrapolations

1950 1952 1954 1956 1958 1960 1962
0

100

200

300

400

500

600

700

Four additive components have been identified in the data

I A linearly increasing function.

I An approximately periodic function with a period of 1.0 years and
with linearly increasing amplitude.

I A smooth function.

I Uncorrelated noise with linearly increasing standard deviation.

Zoubin Ghahramani 17 / 24

Lloyd et al., 2014; Ghahramani 2015

Generative models for curve fitters
An automatic report for the dataset : 02-solar

The Automatic Statistician

Abstract

This report was produced by the Automatic Bayesian Covariance Discovery

(ABCD) algorithm.

1 Executive summary

The raw data and full model posterior with extrapolations are shown in figure 1.

Raw data

1650 1700 1750 1800 1850 1900 1950 2000 2050
1360

1360.5

1361

1361.5

1362
Full model posterior with extrapolations

1650 1700 1750 1800 1850 1900 1950 2000 2050
1359.5

1360

1360.5

1361

1361.5

1362

1362.5

Figure 1: Raw data (left) and model posterior with extrapolation (right)

The structure search algorithm has identified eight additive components in the data. The first 4

additive components explain 92.3% of the variation in the data as shown by the coefficient of de-

termination (R

2
) values in table 1. The first 6 additive components explain 99.7% of the variation

in the data. After the first 5 components the cross validated mean absolute error (MAE) does not

decrease by more than 0.1%. This suggests that subsequent terms are modelling very short term

trends, uncorrelated noise or are artefacts of the model or search procedure. Short summaries of the

additive components are as follows:

• A constant.

• A constant. This function applies from 1643 until 1716.

• A smooth function. This function applies until 1643 and from 1716 onwards.

• An approximately periodic function with a period of 10.8 years. This function applies until

1643 and from 1716 onwards.

• A rapidly varying smooth function. This function applies until 1643 and from 1716 on-

wards.

• Uncorrelated noise with standard deviation increasing linearly away from 1837. This func-

tion applies until 1643 and from 1716 onwards.

• Uncorrelated noise with standard deviation increasing linearly away from 1952. This func-

tion applies until 1643 and from 1716 onwards.

• Uncorrelated noise. This function applies from 1643 until 1716.

Model checking statistics are summarised in table 2 in section 4. These statistics have revealed

statistically significant discrepancies between the data and model in component 8.

1

Lloyd et al., 2014

• Question you should ask: how can I simulate my
data?

• A good simulator is a good model

• Bayesian statistics (next lecture) provides methods
for inferring the unknown inputs and latent
variables in the simulator, given known outputs

Think about models generatively

