
Advanced inference in
probabilistic programs

Brooks Paige

• Likelihood weighting / importance sampling

• MCMC (single-dimension, coded by hand)

• “Lightweight” Metropolis-Hastings (update one
random choice at a time, by re-running the
remainder of the program)

Inference thus far

How can we make inference more computationally
efficient?

• Sequential Monte Carlo uses importance sampling as
a building block for an inference algorithm that can
succeed in models with higher-dimensional latent
spaces

• Algorithms which extend SMC: Particle MCMC, and
asynchronous SMC!

• What sort of proposal distributions should we be
simulating from in these methods? Can we learn
importance sampling proposals automatically?

Inference: this talk

• How do you implement an inference algorithm in
Anglican? (JW will show you this afternoon)

• Two important special forms are the interface
between model code and inference code:  
 

• Q: what kinds of inference algorithms can we
develop and implement using this interface?

Inference in Anglican

(observe ...) (sample ...)

(doquery :algorithm model [args] options)

• If we can write our
programs in such a way
that we see early,
incremental evidence
then we can use more
efficient inference
algorithms.

• Intuition: sample
statements which come
after observe statements
can be informed by the
data

Incremental evidence
(defquery monolithic-­‐observe []
 ... ;; many sample statments
 (sample ...)
 (sample ...)
 (sample ...)
 ... ;; single observe /
 ;; conditioning statement
 ;; at the end
 (observe ...))
!
!
(defquery incremental-­‐observe []
 (loop ...
 ;; interleaved sample and
 ;; observe statements
 (sample ...)
 (observe ...)
 (recur ...)))

Hidden Markov model

A Tutorial on Probabilistic Programming

(defquery hmm

[observations init-dist trans-dists obs-dists]

(predict

:states

(reduce

(fn [states obs]

(let [state (sample (get trans-dists

(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(defquery hmm

[ys init-dist trans-dists obs-dists]

(predict

:x

(reduce

(fn [xs y]

(let [x (sample (get trans-dists

(peek xs)))]

(observe (get obs-dists state) y)

(conj xs x)))

[(sample init-dist)]

ys)))

x0 x1 x2 x3 · · ·

y1 y2 y3

Figure 11: Square Lattice Ising Model

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

57

Hidden Markov model

A Tutorial on Probabilistic Programming

(defquery hmm

[observations init-dist trans-dists obs-dists]

(predict

:states

(reduce

(fn [states obs]

(let [state (sample (get trans-dists

(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(defquery hmm

[ys init-dist trans-dists obs-dists]

(predict

:x

(reduce

(fn [xs y]

(let [x (sample (get trans-dists

(peek xs)))]

(observe (get obs-dists state) y)

(conj xs x)))

[(sample init-dist)]

ys)))

x0 x1 x2 x3 · · ·

y1 y2 y3

Figure 11: Square Lattice Ising Model

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

57

Place a massive observe statement at the end

Hidden Markov model

A Tutorial on Probabilistic Programming

(defquery hmm

[observations init-dist trans-dists obs-dists]

(predict

:states

(reduce

(fn [states obs]

(let [state (sample (get trans-dists

(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(defquery hmm

[ys init-dist trans-dists obs-dists]

(predict

:x

(reduce

(fn [xs y]

(let [x (sample (get trans-dists

(peek xs)))]

(observe (get obs-dists state) y)

(conj xs x)))

[(sample init-dist)]

ys)))

x0 x1 x2 x3 · · ·

y1 y2 y3

Figure 11: Square Lattice Ising Model

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

57

Place a massive observe statement at the end

Hidden Markov model

A Tutorial on Probabilistic Programming

(defquery hmm

[observations init-dist trans-dists obs-dists]

(predict

:states

(reduce

(fn [states obs]

(let [state (sample (get trans-dists

(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(defquery hmm

[ys init-dist trans-dists obs-dists]

(predict

:x

(reduce

(fn [xs y]

(let [x (sample (get trans-dists

(peek xs)))]

(observe (get obs-dists state) y)

(conj xs x)))

[(sample init-dist)]

ys)))

x0 x1 x2 x3 · · ·

y1 y2 y3

Figure 11: Square Lattice Ising Model

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

57

Place a massive observe statement at the end

Hidden Markov model

A Tutorial on Probabilistic Programming

(defquery hmm

[observations init-dist trans-dists obs-dists]

(predict

:states

(reduce

(fn [states obs]

(let [state (sample (get trans-dists

(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(defquery hmm

[ys init-dist trans-dists obs-dists]

(predict

:x

(reduce

(fn [xs y]

(let [x (sample (get trans-dists

(peek xs)))]

(observe (get obs-dists state) y)

(conj xs x)))

[(sample init-dist)]

ys)))

x0 x1 x2 x3 · · ·

y1 y2 y3

Figure 11: Square Lattice Ising Model

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

57

Place a massive observe statement at the end

Hidden Markov model

A Tutorial on Probabilistic Programming

(defquery hmm

[observations init-dist trans-dists obs-dists]

(predict

:states

(reduce

(fn [states obs]

(let [state (sample (get trans-dists

(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(defquery hmm

[ys init-dist trans-dists obs-dists]

(predict

:x

(reduce

(fn [xs y]

(let [x (sample (get trans-dists

(peek xs)))]

(observe (get obs-dists state) y)

(conj xs x)))

[(sample init-dist)]

ys)))

x0 x1 x2 x3 · · ·

y1 y2 y3

Figure 11: Square Lattice Ising Model

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

57

Place a massive observe statement at the end

No “feedback” until all random variables have been sampled

Hidden Markov model

A Tutorial on Probabilistic Programming

(defquery hmm

[observations init-dist trans-dists obs-dists]

(predict

:states

(reduce

(fn [states obs]

(let [state (sample (get trans-dists

(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(defquery hmm

[ys init-dist trans-dists obs-dists]

(predict

:x

(reduce

(fn [xs y]

(let [x (sample (get trans-dists

(peek xs)))]

(observe (get obs-dists state) y)

(conj xs x)))

[(sample init-dist)]

ys)))

x0 x1 x2 x3 · · ·

y1 y2 y3

Figure 11: Square Lattice Ising Model

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

57

Place observe statements as early as possibly

Hidden Markov model

A Tutorial on Probabilistic Programming

(defquery hmm

[observations init-dist trans-dists obs-dists]

(predict

:states

(reduce

(fn [states obs]

(let [state (sample (get trans-dists

(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(defquery hmm

[ys init-dist trans-dists obs-dists]

(predict

:x

(reduce

(fn [xs y]

(let [x (sample (get trans-dists

(peek xs)))]

(observe (get obs-dists state) y)

(conj xs x)))

[(sample init-dist)]

ys)))

x0 x1 x2 x3 · · ·

y1 y2 y3

Figure 11: Square Lattice Ising Model

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

57

Place observe statements as early as possibly

Hidden Markov model

A Tutorial on Probabilistic Programming

(defquery hmm

[observations init-dist trans-dists obs-dists]

(predict

:states

(reduce

(fn [states obs]

(let [state (sample (get trans-dists

(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(defquery hmm

[ys init-dist trans-dists obs-dists]

(predict

:x

(reduce

(fn [xs y]

(let [x (sample (get trans-dists

(peek xs)))]

(observe (get obs-dists state) y)

(conj xs x)))

[(sample init-dist)]

ys)))

x0 x1 x2 x3 · · ·

y1 y2 y3

Figure 11: Square Lattice Ising Model

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

57

Place observe statements as early as possibly

Does y1 have high probability given x0 and x1?

Hidden Markov model

A Tutorial on Probabilistic Programming

(defquery hmm

[observations init-dist trans-dists obs-dists]

(predict

:states

(reduce

(fn [states obs]

(let [state (sample (get trans-dists

(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(defquery hmm

[ys init-dist trans-dists obs-dists]

(predict

:x

(reduce

(fn [xs y]

(let [x (sample (get trans-dists

(peek xs)))]

(observe (get obs-dists state) y)

(conj xs x)))

[(sample init-dist)]

ys)))

x0 x1 x2 x3 · · ·

y1 y2 y3

Figure 11: Square Lattice Ising Model

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

57

Place observe statements as early as possibly

Does y2 have high probability given x0, x1, and x2?

Hidden Markov model

A Tutorial on Probabilistic Programming

(defquery hmm

[observations init-dist trans-dists obs-dists]

(predict

:states

(reduce

(fn [states obs]

(let [state (sample (get trans-dists

(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(defquery hmm

[ys init-dist trans-dists obs-dists]

(predict

:x

(reduce

(fn [xs y]

(let [x (sample (get trans-dists

(peek xs)))]

(observe (get obs-dists state) y)

(conj xs x)))

[(sample init-dist)]

ys)))

x0 x1 x2 x3 · · ·

y1 y2 y3

Figure 11: Square Lattice Ising Model

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

57

Place observe statements as early as possibly

Hidden Markov model

A Tutorial on Probabilistic Programming

(defquery hmm

[observations init-dist trans-dists obs-dists]

(predict

:states

(reduce

(fn [states obs]

(let [state (sample (get trans-dists

(peek states)))]

(observe (get obs-dists state) obs)

(conj states state)))

[(sample init-dist)]

observations)))

(defquery hmm

[ys init-dist trans-dists obs-dists]

(predict

:x

(reduce

(fn [xs y]

(let [x (sample (get trans-dists

(peek xs)))]

(observe (get obs-dists state) y)

(conj xs x)))

[(sample init-dist)]

ys)))

x0 x1 x2 x3 · · ·

y1 y2 y3

Figure 11: Square Lattice Ising Model

(declare noah andreas)

(with-primitive-procedures [pub-or-starbucks?]

(defm noah [depth]

(let [noah-location (pub-or-starbucks? 0.6)

andreas-location (andreas (dec depth))]

(observe noah-location andreas-location)

andreas-location))

57

Place observe statements as early as possibly

Incremental evidence == computational efficiency?

• Many models and settings are naturally written
incrementally!
‣ Canonical example: time series models (observe at

discrete timesteps)
‣ Planning problems (observe at discrete timesteps)
‣ Models which factor into global and “local” (per-

datapoint) observes, such as mixture models and
many multilevel Bayesian models

‣ Models such as image synthesis, where the entire
“canvas” is always visible and can be evaluated
according to a fitness function at any time

Incremental evidence

• Running example:
inference in state-
space models

• Observed data
and latent state

• Inference goals:
estimate latent state;
predict future data;
estimate marginal
likelihood

State-space models

“time” (n)
“s

pa
ce

” (
x)

yn
xn

p(x0:N , y0:N) =
NY

n=0

g(yn|x0:n)f(xn|x0:n�1)

• Basic idea: approximate the posterior
distribution using a weighted set of K
particles 
 

•

Sequential Monte Carlo
n = 1

K
to

ta
l p

ar
tic

le
s

p(x0:n|y0:n) ⇡
KX

k=1

w

1:K
n

�

x

(k)
0:n

(x0:n)

x

(k)
0:n

Sequential Monte Carlo
n = 1

K
to

ta
l p

ar
tic

le
s

• Each particle is assigned an
(unnormalized) weight
based on its likelihood 
 

•  
 

•

W k
n

wk
n / W k

n

p(x0:n|y0:n) ⇡
KX

k=1

w

1:K
n

�

x

(k)
0:n

(x0:n)

Sequential Monte Carlo
n = 1

K
to

ta
l p

ar
tic

le
s

• Each particle is assigned an
(unnormalized) weight
based on its likelihood 
 

•  
 

•

W k
n

wk
n / W k

n

p(x0:n|y0:n) ⇡
KX

k=1

w

1:K
n

�

x

(k)
0:n

(x0:n)

n = 2

Sequential Monte Carlo
n = 1

K
to

ta
l p

ar
tic

le
s

• Particles are
resampled according
to their weights, then
simulated forward 

• Each particle has zero
or more children 

• Number of children  
is proportional to the
weight

Mk
n

W k
n

Sequential Monte Carlo
n = 1 n = 2

K
to

ta
l p

ar
tic

le
s

• Particles with low
weight are discarded,
and particles with high
weight are replicated 

• Better-than-average
particles are replicated
more often 

• E[Mn
k |W 1:K

n] =
W k

n

Wn

Sequential Monte Carlo
n = 1 n = 2

K
to

ta
l p

ar
tic

le
s

Iteratively,  

- simulate  
- weight  
- resample

Sequential Monte Carlo
n = 1 n = 2

K
to

ta
l p

ar
tic

le
s

Iteratively,  

- simulate  
- weight  
- resample

Sequential Monte Carlo
n = 1 n = 2 n = 3

K
to

ta
l p

ar
tic

le
s

Sequential Monte Carlo

SMC in action: slowed down for clarity

Probabilistic programs
as state spaces?

• Sequence of N observe’s

!

• Sequence of M sample’s

!

• Sequence of M sampled values

!

• Conditioned on these sampled values the entire computation
is deterministic

Trace

A Tutorial on Probabilistic Programming

according to a standard normal distribution by calling (sample (normal 0 1)) and we
could condition on it taking the value 1.1 with (observe (normal 0 1) 1.1). In a single
execution of a probabilistic program, if we encounter a sample statement, we draw a new
random variable; if we encounter an observe statement, we can record the probability of
the value under the supplied distribution.

We can describe this process somewhat more precisely as follows. We suggest a separa-
tion between the deterministic program code P and the randomness introduced by sample

by considering the probabilistic program to be executed in the context of some backend B,
and introduce the concept of a program execution trace which enumerates all random choices
made during the course of executing the program. Crucially, the probabilistic program ex-
ecution is completely deterministic given the value of the trace — that is, given a sequence
of sampled values x

1

, x
2

, . . . then the output of the probabilistic program is deterministic.
The backend B interacts with the program P as follows.

• We initialize by beginning execution of the program P.

• When execution of P encounters a sample statement, observe statement, or the end
of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a parameter
vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns control to P
which continues execution, providing this value as the output of sample.

– observe: P passes to B a tuple (g, �, y) consisting of a distribution g, a parameter
vector �, and a observed value y. Control is then returned to P, which continues
execution.

– If P has terminated, it returns a value z, which can be any arbitrary (determin-
istic) function of the program trace.

Suppose after a single execution of a probabilistic program in this manner, we encounter N
observe statements and M sample statements. This yields sequences of tuples {(gi, �i, yi)}Ni=1

corresponding to the observe statements, and {(fj , ✓j)}Mj=1

corresponding to the sample

statements, with the associated sequence of sampled values (i.e. the program execution
trace) {xj}Mj=1

. The probability of this program execution trace can be defined, up to an
unknown normalizing constant, as a product of all random choices x and all observed values
y, with

�(x) , p(x,y) =
NY

i=1

gi(yi|�i)
MY

j=1

fj(xj |✓j). (72)

Note that this ordering, as well as the cardinalities M and N , are not necessarily identical
across di↵erent runs of the program.

Obscured by the notation above is the dependency structure induced by the probabilistic
program P. Each parameter vector �i and ✓j are themselves deterministic functions of
(potentially) every previous random choice in the program. So too are gi and fj . Let ni

denote the total number of random values sampled prior to the ith observe statement and
the bold, subscripted value xj = x

1

⇥ · · · ⇥ xj denote a partial program execution trace

53

A Tutorial on Probabilistic Programming

according to a standard normal distribution by calling (sample (normal 0 1)) and we
could condition on it taking the value 1.1 with (observe (normal 0 1) 1.1). In a single
execution of a probabilistic program, if we encounter a sample statement, we draw a new
random variable; if we encounter an observe statement, we can record the probability of
the value under the supplied distribution.

We can describe this process somewhat more precisely as follows. We suggest a separa-
tion between the deterministic program code P and the randomness introduced by sample

by considering the probabilistic program to be executed in the context of some backend B,
and introduce the concept of a program execution trace which enumerates all random choices
made during the course of executing the program. Crucially, the probabilistic program ex-
ecution is completely deterministic given the value of the trace — that is, given a sequence
of sampled values x

1

, x
2

, . . . then the output of the probabilistic program is deterministic.
The backend B interacts with the program P as follows.

• We initialize by beginning execution of the program P.

• When execution of P encounters a sample statement, observe statement, or the end
of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a parameter
vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns control to P
which continues execution, providing this value as the output of sample.

– observe: P passes to B a tuple (g, �, y) consisting of a distribution g, a parameter
vector �, and a observed value y. Control is then returned to P, which continues
execution.

– If P has terminated, it returns a value z, which can be any arbitrary (determin-
istic) function of the program trace.

Suppose after a single execution of a probabilistic program in this manner, we encounter N
observe statements and M sample statements. This yields sequences of tuples {(gi, �i, yi)}Ni=1

corresponding to the observe statements, and {(fj , ✓j)}Mj=1

corresponding to the sample

statements, with the associated sequence of sampled values (i.e. the program execution
trace) {xj}Mj=1

. The probability of this program execution trace can be defined, up to an
unknown normalizing constant, as a product of all random choices x and all observed values
y, with

�(x) , p(x,y) =
NY

i=1

gi(yi|�i)
MY

j=1

fj(xj |✓j). (72)

Note that this ordering, as well as the cardinalities M and N , are not necessarily identical
across di↵erent runs of the program.

Obscured by the notation above is the dependency structure induced by the probabilistic
program P. Each parameter vector �i and ✓j are themselves deterministic functions of
(potentially) every previous random choice in the program. So too are gi and fj . Let ni

denote the total number of random values sampled prior to the ith observe statement and
the bold, subscripted value xj = x

1

⇥ · · · ⇥ xj denote a partial program execution trace

53

A Tutorial on Probabilistic Programming

according to a standard normal distribution by calling (sample (normal 0 1)) and we
could condition on it taking the value 1.1 with (observe (normal 0 1) 1.1). In a single
execution of a probabilistic program, if we encounter a sample statement, we draw a new
random variable; if we encounter an observe statement, we can record the probability of
the value under the supplied distribution.

We can describe this process somewhat more precisely as follows. We suggest a separa-
tion between the deterministic program code P and the randomness introduced by sample

by considering the probabilistic program to be executed in the context of some backend B,
and introduce the concept of a program execution trace which enumerates all random choices
made during the course of executing the program. Crucially, the probabilistic program ex-
ecution is completely deterministic given the value of the trace — that is, given a sequence
of sampled values x

1

, x
2

, . . . then the output of the probabilistic program is deterministic.
The backend B interacts with the program P as follows.

• We initialize by beginning execution of the program P.

• When execution of P encounters a sample statement, observe statement, or the end
of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a parameter
vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns control to P
which continues execution, providing this value as the output of sample.

– observe: P passes to B a tuple (g, �, y) consisting of a distribution g, a parameter
vector �, and a observed value y. Control is then returned to P, which continues
execution.

– If P has terminated, it returns a value z, which can be any arbitrary (determin-
istic) function of the program trace.

Suppose after a single execution of a probabilistic program in this manner, we encounter N
observe statements and M sample statements. This yields sequences of tuples {(gi, �i, yi)}Ni=1

corresponding to the observe statements, and {(fj , ✓j)}Mj=1

corresponding to the sample

statements, with the associated sequence of sampled values (i.e. the program execution
trace) {xj}Mj=1

. The probability of this program execution trace can be defined, up to an
unknown normalizing constant, as a product of all random choices x and all observed values
y, with

�(x) , p(x,y) =
NY

i=1

gi(yi|�i)
MY

j=1

fj(xj |✓j). (72)

Note that this ordering, as well as the cardinalities M and N , are not necessarily identical
across di↵erent runs of the program.

Obscured by the notation above is the dependency structure induced by the probabilistic
program P. Each parameter vector �i and ✓j are themselves deterministic functions of
(potentially) every previous random choice in the program. So too are gi and fj . Let ni

denote the total number of random values sampled prior to the ith observe statement and
the bold, subscripted value xj = x

1

⇥ · · · ⇥ xj denote a partial program execution trace

53

• Defined as (up to a normalization constant)

!

• Hides true dependency structure

Trace Probability

A Tutorial on Probabilistic Programming

according to a standard normal distribution by calling (sample (normal 0 1)) and we
could condition on it taking the value 1.1 with (observe (normal 0 1) 1.1). In a single
execution of a probabilistic program, if we encounter a sample statement, we draw a new
random variable; if we encounter an observe statement, we can record the probability of
the value under the supplied distribution.

We can describe this process somewhat more precisely as follows. We suggest a separa-
tion between the deterministic program code P and the randomness introduced by sample

by considering the probabilistic program to be executed in the context of some backend B,
and introduce the concept of a program execution trace which enumerates all random choices
made during the course of executing the program. Crucially, the probabilistic program ex-
ecution is completely deterministic given the value of the trace — that is, given a sequence
of sampled values x

1

, x
2

, . . . then the output of the probabilistic program is deterministic.
The backend B interacts with the program P as follows.

• We initialize by beginning execution of the program P.

• When execution of P encounters a sample statement, observe statement, or the end
of the program, it yields control to the backend.

– sample: P passes to B a tuple (f, ✓) consisting of a distribution f and a parameter
vector ✓. The backend samples a value x ⇠ f(·|✓); it then returns control to P
which continues execution, providing this value as the output of sample.

– observe: P passes to B a tuple (g, �, y) consisting of a distribution g, a parameter
vector �, and a observed value y. Control is then returned to P, which continues
execution.

– If P has terminated, it returns a value z, which can be any arbitrary (determin-
istic) function of the program trace.

Suppose after a single execution of a probabilistic program in this manner, we encounter N
observe statements and M sample statements. This yields sequences of tuples {(gi, �i, yi)}Ni=1

corresponding to the observe statements, and {(fj , ✓j)}Mj=1

corresponding to the sample

statements, with the associated sequence of sampled values (i.e. the program execution
trace) {xj}Mj=1

. The probability of this program execution trace can be defined, up to an
unknown normalizing constant, as a product of all random choices x and all observed values
y, with

�(x) , p(x,y) =
NY

i=1

gi(yi|�i)
MY

j=1

fj(xj |✓j). (72)

Note that this ordering, as well as the cardinalities M and N , are not necessarily identical
across di↵erent runs of the program.

Obscured by the notation above is the dependency structure induced by the probabilistic
program P. Each parameter vector �i and ✓j are themselves deterministic functions of
(potentially) every previous random choice in the program. So too are gi and fj . Let ni

denote the total number of random values sampled prior to the ith observe statement and
the bold, subscripted value xj = x

1

⇥ · · · ⇥ xj denote a partial program execution trace

53

Wood Group

consisting of the first j sampled values (with x
0

⌘ ;). We can then rewrite Equation 72 in
a form which explicitly represents the dependency structure, as

�(x) = p(x,y) =
NY

i=1

g̃i(xni)

✓
yi

�����̃i(xni)

◆ MY

j=1

f̃j(xj�1

)

✓
xj

����✓̃j(xj�1

)

◆
. (73)

Here, each �̃i and ✓̃j are deterministic procedures which take partial program traces xni ,xj

and return parameter vectors �i and ✓j ; similarly g̃i and f̃j are deterministic functions which
return density functions gi and fj . These procedures correspond exactly to the incremental
executions of P above. Note that the functional forms of the distributions gi and fj are all
those of random primitives, and so by construction we can sample from any fj(·|✓j) and
evaluate any gi(yi|�i) — once the parameters are known.

The normalized posterior probability distribution over program traces can be defined as

⇡(x) , p(x|y) =
�(x)

Z
, Z = p(y) =

Z
�(x)dx (74)

The normalizing constant Z is found by integrating over all possible program execution
traces.

The program output z is defined as a deterministic function of the trace; that is, given
a program execution trace x, we define z = Q(x). This allows us, in theory, to use the
posterior distribution over traces ⇡(x) to characterize the distribution over z given the
observations y; for example, the posterior mean can be found by

E[z] = E[Q(x)] =

Z
Q(x)p(x|y)dx =

Z
Q(x)⇡(x)dx. (75)

It should be clear that this characterization of a probabilistic program allows us to define
models literally as simulations, with the random elements controlled by sample and observe

statements. The generative procedure uses sample to create random variables; synthetic
data sets could be created simply by replacing any observe statement with sample, without
changing the unnormalized distribution p(x,y).

10.1 A first simulation-based inference engine

We will look at a a first, simple simulation-based inference engine based on likelihood
weighting. This will not be an acceptable approach to performing inference, but is easily
understood and provides intuition for more complex approaches. We approximate expecta-
tions of the output values z as weighted sum over sampled values, with

Ê[Q(x)] =
KX

k=1

WkQ(xk). (76)

A very simple way of generating trace samples xk is to run K independent copies of the
program P, yielding K traces, each sampled according to some sequence of Mk di↵erent

54

y1 y2

{ {
etc

x4

x6

x1 x3x2 x4 x5 x6

A TUTORIAL ON PROBABILISTIC PROGRAMMING

Obscured by the notation above is the dependency structure induced by the prob-
abilistic program P . Each parameter vector �i and ✓j are themselves deterministic
functions of (potentially) every previous random choice in the program. So too are
gi and fj . Let ni denote the total number of random values sampled prior to the ith

observe statement and the bold, subscripted value xj = x1 ⇥ · · · ⇥ xj denote a partial
program execution trace consisting of the first j sampled values (with x0 ⌘ ;). We
can then rewrite Equation 105 in a form which explicitly represents the dependency
structure, as

�(x) = p(x,y) =

NY

i=1

g̃i(xni)

✓
yi

����˜�i(xni)

◆ MY

j=1

˜fj(xj�1)

✓
xj

����˜✓j(xj�1)

◆
. (106)

Here, each ˜�i and ˜✓j are deterministic procedures which take partial program traces
xni ,xj and return parameter vectors �i and ✓j ; similarly g̃i and ˜fj are deterministic
functions which return density functions gi and fj . These procedures correspond ex-
actly to the incremental executions of P above. Note that the functional forms of the
distributions gi and fj are all those of random primitives, and so by construction we can
sample from any fj(·|✓j) and evaluate any gi(yi|�i) — once the parameters are known.

The normalized posterior probability distribution over program traces can be defined
as

⇡(x) , p(x|y) = �(x)

Z
, Z = p(y) =

Z
�(x)dx (107)

The normalizing constant Z is found by integrating over all possible program execution
traces.

The program output z is defined as a deterministic function of the trace; that is,
given a program execution trace x, we define z = Q(x). This allows us, in theory, to
use the posterior distribution over traces ⇡(x) to characterize the distribution over z
given the observations y; for example, the posterior mean can be found by

E[z] = E[Q(x)] =

Z
Q(x)p(x|y)dx =

Z
Q(x)⇡(x)dx. (108)

It should be clear that this characterization of a probabilistic program allows us to
define models literally as simulations, with the random elements controlled by sample

and observe statements. The generative procedure uses sample to create random
variables; synthetic data sets could be created simply by replacing any observe state-
ment with sample, without changing the unnormalized distribution p(x,y).

10.1 A first simulation-based inference engine

We will look at a a first, simple simulation-based inference engine based on likelihood
weighting. This will not be an acceptable approach to performing inference, but is eas-
ily understood and provides intuition for more complex approaches. We approximate

65

• Run K independent copies of program simulating from
the prior

!

• Accumulate unnormalized weights (likelihoods)

!

• Use in approximate (Monte Carlo) integration

Ê⇡[R(x)] =
KX

k=1

W kR(xk)

Likelihood Weighting

WOOD GROUP

expectations of the output values z as weighted sum over sampled values, with

E[Q(x)] ⇡
KX

k=1

WkQ(x

k
). (109)

A very simple way of generating trace samples x

k is to run K independent copies of
the program P , yielding K traces, each sampled according to some sequence of Mk

different densities {fk
j , ✓

k
j }Mk

j=1. To be clear what this means is running each copy of
the program entirely independently with the backend sampling proposing values of xk

j

directly via the prior.

q(xk
) =

MkY

j=1

fj(x
k
j |✓kj)

. For each of these K traces x

k, we can compute an associated unnormalized weight
w(xk

) as

w(xk
) =

�(xk
)

q(xk
)

=

NkY

i=1

gki (y
k
i |�k

i) (110)

where Nk denotes the number of observe statements yielding tuples {(gki ,�k
i , y

k
i)}Nk

i=1

for each of the K traces. It follows that

E
"
1

K

KX

k=1

w(xk
)Q(x

k
)

#
=

1

K

KX

k=1

Z
Q(x

k
)

2

4
NkY

i=1

gki (y
k
i |�k

i)

MkY

j=1

fk
j (x

k
j |✓kj)

3

5 dx1 . . . xMk

(111)

=

1

K

KX

k=1

Z
Q(x

k
)�(xk

)dxk (112)

=

Z
Q(x)�(x)dx (113)

and thus also E
h

1
K

PK
k=1 w(x

k
)

i
=

R
�(x)dx = Z.

This allows us to compute unbiased estimates of integrals with respect to the unnor-
malized measure �(x). To estimate integrals with respect to the normalized measure
⇡(x), note that

E[Q(x)] =

Z
Q(x)⇡(x)dx =

1

Z

Z
Q(x)�(x)dx =

R
Q(x)�(x)dxR

�(x)dx
. (114)

66

WOOD GROUP

expectations of the output values z as weighted sum over sampled values, with

E[Q(x)] ⇡
KX

k=1

WkQ(x

k
). (109)

A very simple way of generating trace samples x

k is to run K independent copies of
the program P , yielding K traces, each sampled according to some sequence of Mk

different densities {fk
j , ✓

k
j }Mk

j=1. To be clear what this means is running each copy of
the program entirely independently with the backend sampling proposing values of xk

j

directly via the prior.

q(xk
) =

MkY

j=1

fj(x
k
j |✓kj)

. For each of these K traces x

k, we can compute an associated unnormalized weight
w(xk

) as

w(xk
) =

�(xk
)

q(xk
)

=

NkY

i=1

gki (y
k
i |�k

i) (110)

where Nk denotes the number of observe statements yielding tuples {(gki ,�k
i , y

k
i)}Nk

i=1

for each of the K traces. It follows that

E
"
1

K

KX

k=1

w(xk
)Q(x

k
)

#
=

1

K

KX

k=1

Z
Q(x

k
)

2

4
NkY

i=1

gki (y
k
i |�k

i)

MkY

j=1

fk
j (x

k
j |✓kj)

3

5 dx1 . . . xMk

(111)

=

1

K

KX

k=1

Z
Q(x

k
)�(xk

)dxk (112)

=

Z
Q(x)�(x)dx (113)

and thus also E
h

1
K

PK
k=1 w(x

k
)

i
=

R
�(x)dx = Z.

This allows us to compute unbiased estimates of integrals with respect to the unnor-
malized measure �(x). To estimate integrals with respect to the normalized measure
⇡(x), note that

E[Q(x)] =

Z
Q(x)⇡(x)dx =

1

Z

Z
Q(x)�(x)dx =

R
Q(x)�(x)dxR

�(x)dx
. (114)

66

WOOD GROUP

This estimator can be compactly represented using normalized weights,

W k
=

w(xk
)

PK
`=1 w(x

`
)

(120)

bQK =

KX

k=1

W kQ(x

k
) (121)

bE⇡[Q(x)] =

KX

k=1

W kQ(x

k
)

Note that this estimator is biased for any finite K, but the bias drops of as order O(1/k)
?. Also, since each x

k is simulated independently, we have from the strong law of large
numbers that ?

Pr

✓
lim

K!1
bQK =

Z
Q(x)⇡(x)dx

◆
= 1. (122)

While this will not be an appropriate method for high-dimensional program traces,
it illustrates a baseline “guess-and-check” method that can be used on effectively any
program; “guess” by running the program forward, drawing a random value at each
sample statement, and “check”, probabilistically, by accumulating the probabilities at
each observe.

10.2 A Metropolis-Hastings algorithm

If we are given a probabilistic model specified only in terms of this simulation model, can
we define a Metropolis-Hastings algorithm to sample from its posterior? The answer is
yes. Recall that a MH algorithm draws a sequence of dependent samples according
to a target distribution ⇡(x) by using a proposal kernel q(x0|x); given a current sam-
ple x, we propose a new candidate sample x

0 ⇠ q(·|x) and compute an acceptance
probability

↵ = min

✓
1,

⇡(x0
)q(x|x0

)

⇡(x)q(x0|x)

◆
. (123)

With probability ↵ we accept this proposal, and select x0 as the next sample; otherwise,
we select x, repeating it as the next sample. Note that as the normalization constant
Z for the density ⇡ is the same for both x and x

0, we can replace ⇡ with � in this ac-
ceptance ratio. We can construct a sampler along these lines for sampling probabilistic
program traces.

The style of sampling algorithm we consider here is related to “single-site” MH al-
gorithms. We initialize the algorithm by running a single execution of the probabilistic
program, generating an initial trace x

0, of length M0. Now, given a trace x

s, we define a
proposal function q(x0|x) for sampling new candidate traces as follows. First: the trace

70

Probabilistic programs as state spaces
• Notation

!

!

!

• Incrementalized joint

!

• Incrementalized target

WOOD GROUP

of calls to observe is fixed across different executions of the program; that is, the value
of N is not itself random. This is not a strong restriction in practice, as in general we
will have a generative model which is conditioned on a dataset y1, . . . , yN , and thus any
particular re-execution of the program on the same dataset will have N observe state-
ments; the number M of latent variables xj in each trace may still vary dramatically
between executions.

A sequential Monte Carlo algorithm for inference in probabilistic programs is based
on the ability to decompose the full program trace x into a product over incremental
expansions of the program trace. We define ˜

xi as the subspace of x which is sampled
in between observe statements i� 1 and i, that is, with x1:n =

˜

x1 ⇥ · · · ⇥ ˜

xn such that
˜

x1:N denotes the full program trace, and with each ˜

xi disjoint. While there are always N
such ˜

xi, each may be of varying dimensionality on each execution, and there may also
be some ˜

xi = ; if no new randomness is sampled between two subsequent observe
statements. We can thus define a sequence of incremental program execution traces
�1, . . . , �N with

�n(˜x1:n) =

NY

n=1

g(yn|˜x1:n)p(˜xn|˜x1:n�1), (126)

with associated normalized incremental targets

⇡n(˜x1:n) =
1

Zn

�n(˜x1:n) (127)

where each Zn is an unknown constant. Note that computing the density p(˜xn|˜x1:n�1)

may well be impossible in general, but we can still draw samples from it via forward
simulation of the program.

The sequential importance resampling algorithm initializes by executing K parallel
copies of the program P , and continuing execution until the first observe statement is
encountered. Weights for each partial trace ˜

x

k
1, for k = 1, . . . , K, are then initialized to

w(˜xk
1) = gk1(y

k
1 |�k

1) ⌘ p(yk1 |˜xk
1). (128)

Some of the sampled values ˜

x

k
1 will be “better” than others, in the sense that they have

higher weight. A resampling step now duplicates the more promising program execu-
tion traces, and discards those which are already very unlikely, by sampling ancestor
indices ak1 from a discrete distribution on W k

1 , where

W k
n =

w(˜xk
n)PK

`=1 w(˜x
k
n)
. (129)

After resampling, all particles have equal weight. We then continue executing the pro-
gram from the program traces {˜xak1

1 }K
k=1, until the next observe statement. In general,

for n > 1, we then have

w(˜xk
n) = gkn(y

k
n|�k

n) ⌘ p(ykn|˜x
akn�1
1:n�1 ⇥ ˜

x

k
n); (130)

72

WOOD GROUP

of calls to observe is fixed across different executions of the program; that is, the value
of N is not itself random. This is not a strong restriction in practice, as in general we
will have a generative model which is conditioned on a dataset y1, . . . , yN , and thus any
particular re-execution of the program on the same dataset will have N observe state-
ments; the number M of latent variables xj in each trace may still vary dramatically
between executions.

A sequential Monte Carlo algorithm for inference in probabilistic programs is based
on the ability to decompose the full program trace x into a product over incremental
expansions of the program trace. We define ˜

xi as the subspace of x which is sampled
in between observe statements i� 1 and i, that is, with x1:n =

˜

x1 ⇥ · · · ⇥ ˜

xn such that
˜

x1:N denotes the full program trace, and with each ˜

xi disjoint. While there are always N
such ˜

xi, each may be of varying dimensionality on each execution, and there may also
be some ˜

xi = ; if no new randomness is sampled between two subsequent observe
statements. We can thus define a sequence of incremental program execution traces
�1, . . . , �N with

�n(˜x1:n) =

NY

n=1

g(yn|˜x1:n)p(˜xn|˜x1:n�1), (126)

with associated normalized incremental targets

⇡n(˜x1:n) =
1

Zn

�n(˜x1:n) (127)

where each Zn is an unknown constant. Note that computing the density p(˜xn|˜x1:n�1)

may well be impossible in general, but we can still draw samples from it via forward
simulation of the program.

The sequential importance resampling algorithm initializes by executing K parallel
copies of the program P , and continuing execution until the first observe statement is
encountered. Weights for each partial trace ˜

x

k
1, for k = 1, . . . , K, are then initialized to

w(˜xk
1) = gk1(y

k
1 |�k

1) ⌘ p(yk1 |˜xk
1). (128)

Some of the sampled values ˜

x

k
1 will be “better” than others, in the sense that they have

higher weight. A resampling step now duplicates the more promising program execu-
tion traces, and discards those which are already very unlikely, by sampling ancestor
indices ak1 from a discrete distribution on W k

1 , where

W k
n =

w(˜xk
n)PK

`=1 w(˜x
k
n)
. (129)

After resampling, all particles have equal weight. We then continue executing the pro-
gram from the program traces {˜xak1

1 }K
k=1, until the next observe statement. In general,

for n > 1, we then have

w(˜xk
n) = gkn(y

k
n|�k

n) ⌘ p(ykn|˜x
akn�1
1:n�1 ⇥ ˜

x

k
n); (130)

72

y1 y2

{ {
etc

x1 x2 x3 x4 x5 x6

x̃1 x̃2

WOOD GROUP

of calls to observe is fixed across different executions of the program; that is, the value
of N is not itself random. This is not a strong restriction in practice, as in general we
will have a generative model which is conditioned on a dataset y1, . . . , yN , and thus any
particular re-execution of the program on the same dataset will have N observe state-
ments; the number M of latent variables xj in each trace may still vary dramatically
between executions.

A sequential Monte Carlo algorithm for inference in probabilistic programs is based
on the ability to decompose the full program trace x into a product over incremental
expansions of the program trace. We define ˜

xi as the subspace of x which is sampled
in between observe statements i� 1 and i, that is, with ˜

x1:n =

˜

x1 ⇥ · · · ⇥ ˜

xn such that
˜

x1:N denotes the full program trace, and with each ˜

xi disjoint. While there are always N
such ˜

xi, each may be of varying dimensionality on each execution, and there may also
be some ˜

xi = ; if no new randomness is sampled between two subsequent observe
statements. We can thus define a sequence of incremental program execution traces
�1, . . . , �N with

�n(˜x1:n) =

NY

n=1

g(yn|˜x1:n)p(˜xn|˜x1:n�1), (126)

with associated normalized incremental targets

⇡n(˜x1:n) =
1

Zn

�n(˜x1:n) (127)

where each Zn is an unknown constant. Note that computing the density p(˜xn|˜x1:n�1)

may well be impossible in general, but we can still draw samples from it via forward
simulation of the program.

The sequential importance resampling algorithm initializes by executing K parallel
copies of the program P , and continuing execution until the first observe statement is
encountered. Weights for each partial trace ˜

x

k
1, for k = 1, . . . , K, are then initialized to

w(˜xk
1) = gk1(y

k
1 |�k

1) ⌘ p(yk1 |˜xk
1). (128)

Some of the sampled values ˜

x

k
1 will be “better” than others, in the sense that they have

higher weight. A resampling step now duplicates the more promising program execu-
tion traces, and discards those which are already very unlikely, by sampling ancestor
indices ak1 from a discrete distribution on W k

1 , where

W k
n =

w(˜xk
n)PK

`=1 w(˜x
k
n)
. (129)

After resampling, all particles have equal weight. We then continue executing the pro-
gram from the program traces {˜xak1

1 }K
k=1, until the next observe statement. In general,

for n > 1, we then have

w(˜xk
n) = gkn(y

k
n|�k

n) ⌘ p(ykn|˜x
akn�1
1:n�1 ⇥ ˜

x

k
n); (130)

72

Particle Markov chain
Monte Carlo

Particle Markov Chain Monte Carlo

• Iterable SMC
- PIMH : “particle

independent Metropolis-
Hastings”

- PGIBBS : “iterated
conditional SMC”

- PGAS : “particle Gibbs
ancestral sampling"

n n n

…

n n n

…

n n n

…
Sw

ee
p

ÊPIMH [R(x)] =
1

S

SX

s=1

KX

k=1

W s,kR(xs,k)

PIMH Math
• Each sweep of SMC can

compute

!

• PIMH is MH that accepts entire
new particle sets w.p.

!

• And all particles can be used

WOOD GROUP

likelihood estimate ˆZ?. The new candidate set of particles is accepted according to a
probability

↵s
PIMH = min

1,

ˆZ?

ˆZs�1

!
. (136)

If accepted, then the next particle set and next marginal likelihood estimate is set to the
proposed values; otherwise, the values from the previous iteration s � 1 are repeated.
In estimating expectations, the full set of particles can be used, with

ˆEPIMH [Q(x)] =

1

S

SX

s=1

KX

k=1

W s,kQ(x

s,k
). (137)

Formal correctness of the PIMH algorithm is shown by considering it as a standard
independent MH algorithm on an extended space of both the program traces, and the
ancestor indices.

One obvious advantage of this algorithm is its anytime nature: running a single
SMC iteration yields a K-sample approximation to the posterior, and then for each
s = 1, 2, . . . we have s ⇥ K total samples. As we collect more and more samples,
we see a corresponding reduction in error for estimates of posterior expectations. An
alternative scheme can be constructed by replacing the MH accept-reject step with an
additional importance weighting step; this can be understood as Rao-Blackwellizing
over the accept-reject step. That is, we could run an algorithm in which we iteratively
generate S particle sets; for each particle set {xs,k,W s,k}K

k=1 we can assign an ad-
ditional (unnormalized) weight ˆZs. This iterated SMC estimator can then be defined
using the normalized weights V s

S after S particle sets have been generated, with

V s
S =

ˆZs

PS
t=1

ˆZt
(138)

ˆEiSMC [Q(x)] =

SX

s=1

V s
S

KX

k=1

W s,kQ(x

s,k
). (139)

The iterated SMC estimator combines the multiple executions of SMC via importance
sampling, rather than MCMC. Consistency of such an estimator can be shown formally
by characterization of this algorithm as a form of ↵-SMC (?).

10.4.1 ADVANCED PARTICLE MCMC METHODS

Potentially more interesting algorithms can be uncovered by considering other sam-
plers which target the same extended space. In particular, the conditional SMC algo-
rithm re-runs SMC repeatedly in a dependent manner. It is initialized with a single SMC
run, in the same manner as PIMH. However, in subsequent MCMC iterations, a Gibbs
step is taken. After the first SMC run, we sample a single execution trace ˜

x

s,k
1:N which

74

WOOD GROUP

The approximation we can compute through the unnormalized weights at each resam-
pling point (i.e. at each observe) given by

ˆZ =

NY

n=1

ˆZn =

NY

n=1

1

K

KX

k=1

w(˜xk
1:n) (145)

is known to be unbiased (?).

10.4 Particle MCMC algorithms

Particle MCMC algorithms use sequential Monte Carlo as a proposal distribution within
an MCMC algorithm. The most basic application of particle MCMC to probabilistic pro-
grams is the particle independent Metropolis-Hastings algorithm. In this algorithm, we
initialize an MCMC sampler by running SMC with K particles to create an initial set of
K weighted execution traces {x0,k,W 0,k}K

k=1 and compute its marginal likelihood esti-
mate ˆZ0 according to Equation ?? Then, for s = 1, 2, . . . , we run a new SMC sampler
to propose a candidate set of execution traces {x?,k,W 0,k}K

k=1 with associated marginal
likelihood estimate ˆZ?. The new candidate set of particles is accepted according to a
probability

↵s
PIMH = min

1,

ˆZ?

ˆZs�1

!
. (146)

If accepted, then the next particle set and next marginal likelihood estimate is set to the
proposed values; otherwise, the values from the previous iteration s � 1 are repeated.
In estimating expectations, the full set of particles can be used, with

ˆEPIMH [Q(x)] =

1

S

SX

s=1

KX

k=1

W s,kQ(x

s,k
). (147)

Formal correctness of the PIMH algorithm is shown by considering it as a standard
independent MH algorithm on an extended space of both the program traces, and the
ancestor indices.

One obvious advantage of this algorithm is its anytime nature: running a single
SMC iteration yields a K-sample approximation to the posterior, and then for each
s = 1, 2, . . . we have s ⇥ K total samples. As we collect more and more samples,
we see a corresponding reduction in error for estimates of posterior expectations. An
alternative scheme can be constructed by replacing the MH accept-reject step with an
additional importance weighting step; this can be understood as Rao-Blackwellizing
over the accept-reject step. That is, we could run an algorithm in which we iteratively
generate S particle sets; for each particle set {xs,k,W s,k}K

k=1 we can assign an ad-
ditional (unnormalized) weight ˆZs. This iterated SMC estimator can then be defined

74

n n n

…

n n n

…

n n n

…
Sw

ee
p

Ẑ1

Ẑ2

Ẑ⇤

Asynchronous anytime
sequential Monte Carlo

Parallelization in SMC
• Forward simulation trivially parallelizes

• this is the sort of parallelization achieved through
(e.g.) parfor in MATLAB, or pmap in functional
programming languages

• The resampling step (normalizing weights, sampling
child counts) is a global synchronous operation

• cannot resample until all particles finish simulation

Particle Cascade
• Replace resampling step with branching step

• Launch particles asynchronously

• As each particle arrives at an observation, choose
a number of offspring based only on the particles
which have arrived so far

• … don’t need to wait for all particles to arrive

• … only need to track average weights at each  
 observation, which we compute online

Particle Cascade
n = 1

• Start by simulating particles,
one at a time, from

• Weight by likelihood

f(xn|x1:n�1)

g(yn|x1:n)

Particle Cascade
n = 1

• Start by simulating particles,
one at a time, from

• Weight by likelihood

f(xn|x1:n�1)

g(yn|x1:n)

Particle Cascade
n = 1 n = 2 • Keep track of the running

average weight at
each n, based only on
first k particles to arrive

• Choose number of
offspring immediately,
no need to wait for other
particles

•

W
k
n

E[Mn
k |W 1:k

n] =
W k

n

W
k
n

Particle Cascade
n = 1 n = 2 • Launch new particles

while other particles
continue moving forward
through the system

• Total size of particle
system may vary over
course of execution

Particle Cascade
n = 1 n = 2

• Particles do not have
identical weight after
resampling

• The “outgoing” weight
is set to the current
running average W

k
n

Particle Cascade
n = 1 n = 2

Asynchronously  

- simulate  
- weight  
- branch

Asynchronously  

- simulate  
- weight  
- branch

Particle Cascade
n = 1 n = 2

Particle Cascade
n = 1 n = 2 n = 3

Particle Cascade

Particle Cascade

Particle Cascade

Particle Cascade

Particle Cascade

Particle Cascade

Particle Cascade

Particle Cascade

Scalability: Particle Count

• Comparison across particle-based inference
approaches: raw speed of drawing samples

• Each particle runs as a separate CPU process

Scalability: Multiple Cores

• More cores == faster inference

• Scales to multiple cores more efficiently than other
particle-based methods

Particle cascade summary

• Particle cascade is an asynchronous anytime drop-in
replacement for SMC, with the added benefits of

• … an anytime property similar to MCMC methods;
keep running inference indefinitely, stop when
satisfied with the current estimate

• … no barrier synchronizations, yielding increased
particle throughput and parallel scalability as
compared to traditional SMC

Inference networks for
sequential Monte Carlo

Executive Summary

We want to make model-based Bayesian
inference efficient.!
!
• In general: what artifacts can we learn offline to

compile away the runtime costs of inference?  

• Outside of specific (probably wrong) models, inference
is fundamentally not a feed-forward computation! 

• Sequential Monte Carlo for graphical models:
approximate optimal importance sampling proposals

Importance sampling and SMC approximate the
posterior as weighted samples:!
!
 

!
Performance depends on quality of proposal !

tn

zn
w0

w1

w2 N

tn

zn

w0

w1

w2
N

tn

zn

w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

tn

zn
w0

w1

w2 N

tn

zn

w0

w1

w2
N

tn

zn

w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.

3

Inference in Graphical Models
Goal: posterior inference in generative models with
latent variables x and observed variables y:

tn

zn
w0

w1

w2 N

tn

zn

w0

w1

w2
N

tn

zn

w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x); Wk =
w(xk)PK
j=1 w(xj)

. (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

tn

zn
w0

w1

w2 N

tn

zn

w0

w1

w2
N

tn

zn

w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x); Wk =
w(xk)PK
j=1 w(xj)

. (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

tn

zn
w0

w1

w2 N

tn

zn

w0

w1

w2
N

tn

zn

w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

Learning an importance sampling proposal for a single dataset

approximating family

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) q(x|�) (3)

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 4 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (5)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (6)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (7)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,

3

Target density ,

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) = p(x|y) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

argmin
⌘

Ep(y)

⇥
DKL(⇡||q'(⌘,y))

⇤
(5)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from

3

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 4 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (5)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (6)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (7)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,

3

Single dataset :

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) = p(x|y) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

argmin
⌘

Ep(y)

⇥
DKL(⇡||q'(⌘,y))

⇤
(5)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from

3

fit λ to learn an importance
sampling proposal

Inference Networks for Graphical Models

A probabilistic model!
generates data

An inverse model!
generates latents

Can we learn how to sample
from the inverse model?

tn

zn
w0

w1

w2 N

tn

zn

w0

w1

w2
N

tn

zn

w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

tn

zn
w0

w1

w2 N

tn

zn

w0

w1

w2
N

tn

zn

w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

tn

zn
w0

w1

w2 N

tn

zn

w0

w1

w2
N

tn

zn

w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 4 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (5)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (6)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (7)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,

3

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) = p(x|y) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

argmin
⌘

Ep(y)

⇥
DKL(⇡||q'(⌘,y))

⇤
(5)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from

3

Averaging over!  
all possible datasets:

learn a mapping from
arbitrary datasets to λ

Idea: amortize inference by learning a map from data to target

approximating family

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) q(x|�) (3)

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 4 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (5)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (6)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (7)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,

3

Target density ,

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) = p(x|y) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

argmin
⌘

Ep(y)

⇥
DKL(⇡||q'(⌘,y))

⇤
(5)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from

3

Inference Networks for Graphical Models

A probabilistic model!
generates data

An inverse model!
generates latents

Can we learn how to sample
from the inverse model?

tn

zn
w0

w1

w2 N

tn

zn

w0

w1

w2
N

tn

zn

w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

tn

zn
w0

w1

w2 N

tn

zn

w0

w1

w2
N

tn

zn

w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

tn

zn
w0

w1

w2 N

tn

zn

w0

w1

w2
N

tn

zn

w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

Learn to invert the generative model, before seeing data

Compiling away runtime costs of inference

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 4 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (5)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (6)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (7)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,

3

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) = p(x|y) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

argmin
⌘

Ep(y)

⇥
DKL(⇡||q'(⌘,y))

⇤
(5)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from

3

Averaging over!  
all possible datasets:

expectation over any data
we might observe

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.

3

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 4 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (5)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (6)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (7)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,

3

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) = p(x|y) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

argmin
⌘

Ep(y)

⇥
DKL(⇡||q'(⌘,y))

⇤
(5)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from

3

Averaging over!  
all possible datasets:

New objective function,
upper-level parameters:

Learn to invert the generative model, before seeing data

Compiling away runtime costs of inference

expectation over (tractable)
joint distribution

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.

3

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 4 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (5)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (6)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (7)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,

3

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) = p(x|y) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

argmin
⌘

Ep(y)

⇥
DKL(⇡||q'(⌘,y))

⇤
(5)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from

3

Averaging over!  
all possible datasets:

New objective function,
upper-level parameters:

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.

In hierarchical models such as the model for failure rates of power plant pumps [6] in
Figure 2, conditional independence structure in an inverse model can be leveraged to break
down q(x|y) into a product of smaller conditional densities, each of the form qi(xi|fpa(xi)).
We take advantage of this structure by defining more parameter-e�cient representations of
q(x|·) that reuse replicated inverse conditional densities, and for more e�cient inference via
a sequential Monte Carlo algorithm.

3

Tractable gradient!  
Can train entirely offline:

Learn to invert the generative model, before seeing data

Compiling away runtime costs of inference

approximate with samples
from the joint distribution

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.

In hierarchical models such as the model for failure rates of power plant pumps [6] in
Figure 2, conditional independence structure in an inverse model can be leveraged to break
down q(x|y) into a product of smaller conditional densities, each of the form qi(xi|fpa(xi)).
We take advantage of this structure by defining more parameter-e�cient representations of
q(x|·) that reuse replicated inverse conditional densities, and for more e�cient inference via
a sequential Monte Carlo algorithm.

3

Expected KL divergence:

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.

3

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) = p(x|y) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

argmin
⌘

Ep(y)

⇥
DKL(⇡||q'(⌘,y))

⇤
(5)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from

3

Gradient:

approximate with
samples from model

choose a known
parametric family…

… and any
differentiable

function

Choice of approximating family

Choice of approximating family

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.

In hierarchical models such as the model for failure rates of power plant pumps [6] in
Figure 2, conditional independence structure in an inverse model can be leveraged to break
down q(x|y) into a product of smaller conditional densities, each of the form qi(xi|fpa(xi)).
We take advantage of this structure by defining more parameter-e�cient representations of
q(x|·) that reuse replicated inverse conditional densities, and for more e�cient inference via
a sequential Monte Carlo algorithm.

3

Expected KL divergence:

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (3)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 3 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (4)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (5)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (6)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from
the joint distribution p(x,y) to generate candidate data points (e↵ectively providing infinite
training data). In any directed graphical model this can be achieved by ancestral sampling,
where the variables y are treated as as-yet unobserved. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) itself — we only need the gradients of
our recognition model q(x|'(⌘,y)), allowing use of any di↵erentiable representation for q.

3

yn

�n

tn

↵

�

N

yn

�n

tn

↵

�

N

yn

'�n �n

tn

'↵�

↵

�

N

Figure 2: a hierarchical Bayesian model. (left) A generative model for the data {xn};
(middle) with dependency structure inverted; (right) showing neural conditional density
estimators. Each yn ⇠ Poisson(�ntn), with �n ⇠ Gamma(↵,�) and gamma priors on ↵,�.
The learned factor '�n is replicated N times in the inverse model, allowing us to re-use the
weights.

p̃(x|y) =
NY

i=1

p̃(xi|fpa(xi))

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both
in the context of population Monte Carlo (PMC) [3] and sequential Monte Carlo [4, 5, 9],
proposes a parametric family q(x|�), where � is a free parameter, and uses the reverse
Kullback-Leibler (KL) divergence DKL(⇡||q�) as an objective function, choosing � to mini-
mize

argmin
�

DKL(q�||⇡) 6= ⇡(x) = p(x|y) q(x|�) (3)

argmin
�

DKL(⇡||q�) =
Z

⇡(x) log


⇡(x)

q(x|�)

�
dx. (4)

argmin
⌘

Ep(y)

⇥
DKL(⇡||q'(⌘,y))

⇤
(5)

This KL divergence between the true posterior distribution p(x|y) and proposal distribution
q(x|�) is also known as the relative entropy criterion, and is a preferred objective function
in situations in which the estimation goal construct a high-quality weighted sample repre-
sentation, rather than to minimize the variance of a particular expectation [4].

In an amortized inference setting, instead of learning � explicitly for a fixed value of y,
we learn a mapping from y to �. More explicitly, if y 2 Y and � 2 #, then learning an
explicit mapping ' : Y ! # allows performing approximate inference for p(x|y) with only
the computational complexity of evaluating the deterministic function '. The tradeo↵ is
that the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algorithms by learning a family of
distributions q(x|y), parameterized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of higher-level parameters ⌘. We would like
a choice of ⌘ which performs well across all datasets y. We can frame this as minimizing
the expected value of Eq. 5 under p(y), suggesting an objective function J (⌘) defined as

J (⌘) =

Z
DKL(⇡||q�)p(y)dy (6)

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy (7)

= Ep(x,y) [� log q(x|'(⌘,y))] + const. (8)

which has a gradient r⌘J (⌘) = Ep(x,y) [�r⌘ log q(x|'(⌘,y))] .

Notice that these expectations are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating the expectation of the gradient
r⌘J (⌘) by sampling synthetic full-data training examples {x,y} from the original model.
This procedure can be performed entirely o✏ine — we require only to be able to sample from

3

Gradient:

Univariate x: mixture density network

• Neural network outputs parameters of a parametric model for the
next dimension, conditioned on previous dimensions!
• e.g. mixture of Gaussians, categorical, … 

• MADE: efficient weight sharing for multivariate densities!

Multivariate x: autoregressive neural density estimator

Non-conjugate polynomial regression

Inference Networks for Sequential Monte Carlo in Graphical Models

Figure 4. Representative output in the polynomial regression example. Plots show 100 samples each at 5% opacity, with the mean marked
as a solid dashed line. These are all proposed using the same pre-trained neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples by a factor 100, after 10000 samples of
burnin. The neural network proposal yields estimated polynomial curves close to the true posterior solution, albeit slightly more diffuse.

4.2. A hierarchical Bayesian model

Consider as a new example a representative multilevel
model where exact inference is intractable, a Poisson model
for estimating failure rates of power plant pumps (George
et al., 1993). Given N power plant pumps, each having
operated for t

n

thousands of hours, we see x

n

failures, fol-
lowing

↵ ⇠ Exponential(1.0), � ⇠ Gamma(0.1, 1.0),

✓

n

⇠ Gamma(↵,�), y

n

⇠ Poisson(✓

n

t

n

).

The graphical model, an inverse factorization, and the neural
network structure are shown in Figure 2. To generating syn-
thetic training data, t

n

are sampled iid from an exponential
distribution with mean 50.

The repeated structure in the inverse factorization of this
model allows us to learn a single inverse factor to represent
the distribution p̃(✓

n

|t
n

, y

n

) across all n. This yields a far
simpler learning problem than were we forced to fit all of
p̃(✓1:N |t1:N , y1:N) jointly. Further, the repeated structure

allows us to use a divide-and-conquer SMC algorithm (Lind-
sten et al., 2014) which works particularly efficiently on this
model. Each of the N replicated structures are sampled
in parallel with independent particle sets, weighted locally,
and resampled; once all ✓

n

are sampled, we end by sam-
pling ↵ and � jointly, which need both be included in order
to evaluate the final terms in the joint target density. We
stress that there is no obvious baseline proposal density to
use for a divide-and-conquer SMC algorithm, as neither the
marginal prior nor posterior distributions over ✓

n

are avail-
able in closed form. Any usage of this algorithm requires
manual specification of some proposal q(✓

n

).

We test our proposals on the actual power pump failure data
analyzed in George et al. (1993). The relative convergence
speeds of marginal likelihood estimators from importance
sampling from prior and neural network proposals, and
SMC with neural network proposals, are shown in Figure 5.
To capture the wide tails of the broad gamma distributions,
we use a mixture of 10 Gaussians here at each output node,
and 500 hidden units in each of two hidden layers.

Samples from prior

Non-conjugate polynomial regression

Inference Networks for Sequential Monte Carlo in Graphical Models

Figure 4. Representative output in the polynomial regression example. Plots show 100 samples each at 5% opacity, with the mean marked
as a solid dashed line. These are all proposed using the same pre-trained neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples by a factor 100, after 10000 samples of
burnin. The neural network proposal yields estimated polynomial curves close to the true posterior solution, albeit slightly more diffuse.

4.2. A hierarchical Bayesian model

Consider as a new example a representative multilevel
model where exact inference is intractable, a Poisson model
for estimating failure rates of power plant pumps (George
et al., 1993). Given N power plant pumps, each having
operated for t

n

thousands of hours, we see x

n

failures, fol-
lowing

↵ ⇠ Exponential(1.0), � ⇠ Gamma(0.1, 1.0),

✓

n

⇠ Gamma(↵,�), y

n

⇠ Poisson(✓

n

t

n

).

The graphical model, an inverse factorization, and the neural
network structure are shown in Figure 2. To generating syn-
thetic training data, t

n

are sampled iid from an exponential
distribution with mean 50.

The repeated structure in the inverse factorization of this
model allows us to learn a single inverse factor to represent
the distribution p̃(✓

n

|t
n

, y

n

) across all n. This yields a far
simpler learning problem than were we forced to fit all of
p̃(✓1:N |t1:N , y1:N) jointly. Further, the repeated structure

allows us to use a divide-and-conquer SMC algorithm (Lind-
sten et al., 2014) which works particularly efficiently on this
model. Each of the N replicated structures are sampled
in parallel with independent particle sets, weighted locally,
and resampled; once all ✓

n

are sampled, we end by sam-
pling ↵ and � jointly, which need both be included in order
to evaluate the final terms in the joint target density. We
stress that there is no obvious baseline proposal density to
use for a divide-and-conquer SMC algorithm, as neither the
marginal prior nor posterior distributions over ✓

n

are avail-
able in closed form. Any usage of this algorithm requires
manual specification of some proposal q(✓

n

).

We test our proposals on the actual power pump failure data
analyzed in George et al. (1993). The relative convergence
speeds of marginal likelihood estimators from importance
sampling from prior and neural network proposals, and
SMC with neural network proposals, are shown in Figure 5.
To capture the wide tails of the broad gamma distributions,
we use a mixture of 10 Gaussians here at each output node,
and 500 hidden units in each of two hidden layers.

Samples from prior

Inference Networks for Sequential Monte Carlo in Graphical Models

Figure 4. Representative output in the polynomial regression example. Plots show 100 samples each at 5% opacity, with the mean marked
as a solid dashed line. These are all proposed using the same pre-trained neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples by a factor 100, after 10000 samples of
burnin. The neural network proposal yields estimated polynomial curves close to the true posterior solution, albeit slightly more diffuse.

4.2. A hierarchical Bayesian model

Consider as a new example a representative multilevel
model where exact inference is intractable, a Poisson model
for estimating failure rates of power plant pumps (George
et al., 1993). Given N power plant pumps, each having
operated for t

n

thousands of hours, we see x

n

failures, fol-
lowing

↵ ⇠ Exponential(1.0), � ⇠ Gamma(0.1, 1.0),

✓

n

⇠ Gamma(↵,�), y

n

⇠ Poisson(✓

n

t

n

).

The graphical model, an inverse factorization, and the neural
network structure are shown in Figure 2. To generating syn-
thetic training data, t

n

are sampled iid from an exponential
distribution with mean 50.

The repeated structure in the inverse factorization of this
model allows us to learn a single inverse factor to represent
the distribution p̃(✓

n

|t
n

, y

n

) across all n. This yields a far
simpler learning problem than were we forced to fit all of
p̃(✓1:N |t1:N , y1:N) jointly. Further, the repeated structure

allows us to use a divide-and-conquer SMC algorithm (Lind-
sten et al., 2014) which works particularly efficiently on this
model. Each of the N replicated structures are sampled
in parallel with independent particle sets, weighted locally,
and resampled; once all ✓

n

are sampled, we end by sam-
pling ↵ and � jointly, which need both be included in order
to evaluate the final terms in the joint target density. We
stress that there is no obvious baseline proposal density to
use for a divide-and-conquer SMC algorithm, as neither the
marginal prior nor posterior distributions over ✓

n

are avail-
able in closed form. Any usage of this algorithm requires
manual specification of some proposal q(✓

n

).

We test our proposals on the actual power pump failure data
analyzed in George et al. (1993). The relative convergence
speeds of marginal likelihood estimators from importance
sampling from prior and neural network proposals, and
SMC with neural network proposals, are shown in Figure 5.
To capture the wide tails of the broad gamma distributions,
we use a mixture of 10 Gaussians here at each output node,
and 500 hidden units in each of two hidden layers.

Metropolis-Hastings

Non-conjugate polynomial regression

Inference Networks for Sequential Monte Carlo in Graphical Models

Figure 4. Representative output in the polynomial regression example. Plots show 100 samples each at 5% opacity, with the mean marked
as a solid dashed line. These are all proposed using the same pre-trained neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples by a factor 100, after 10000 samples of
burnin. The neural network proposal yields estimated polynomial curves close to the true posterior solution, albeit slightly more diffuse.

4.2. A hierarchical Bayesian model

Consider as a new example a representative multilevel
model where exact inference is intractable, a Poisson model
for estimating failure rates of power plant pumps (George
et al., 1993). Given N power plant pumps, each having
operated for t

n

thousands of hours, we see x

n

failures, fol-
lowing

↵ ⇠ Exponential(1.0), � ⇠ Gamma(0.1, 1.0),

✓

n

⇠ Gamma(↵,�), y

n

⇠ Poisson(✓

n

t

n

).

The graphical model, an inverse factorization, and the neural
network structure are shown in Figure 2. To generating syn-
thetic training data, t

n

are sampled iid from an exponential
distribution with mean 50.

The repeated structure in the inverse factorization of this
model allows us to learn a single inverse factor to represent
the distribution p̃(✓

n

|t
n

, y

n

) across all n. This yields a far
simpler learning problem than were we forced to fit all of
p̃(✓1:N |t1:N , y1:N) jointly. Further, the repeated structure

allows us to use a divide-and-conquer SMC algorithm (Lind-
sten et al., 2014) which works particularly efficiently on this
model. Each of the N replicated structures are sampled
in parallel with independent particle sets, weighted locally,
and resampled; once all ✓

n

are sampled, we end by sam-
pling ↵ and � jointly, which need both be included in order
to evaluate the final terms in the joint target density. We
stress that there is no obvious baseline proposal density to
use for a divide-and-conquer SMC algorithm, as neither the
marginal prior nor posterior distributions over ✓

n

are avail-
able in closed form. Any usage of this algorithm requires
manual specification of some proposal q(✓

n

).

We test our proposals on the actual power pump failure data
analyzed in George et al. (1993). The relative convergence
speeds of marginal likelihood estimators from importance
sampling from prior and neural network proposals, and
SMC with neural network proposals, are shown in Figure 5.
To capture the wide tails of the broad gamma distributions,
we use a mixture of 10 Gaussians here at each output node,
and 500 hidden units in each of two hidden layers.

Samples from proposal

Inference Networks for Sequential Monte Carlo in Graphical Models

Figure 4. Representative output in the polynomial regression example. Plots show 100 samples each at 5% opacity, with the mean marked
as a solid dashed line. These are all proposed using the same pre-trained neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples by a factor 100, after 10000 samples of
burnin. The neural network proposal yields estimated polynomial curves close to the true posterior solution, albeit slightly more diffuse.

4.2. A hierarchical Bayesian model

Consider as a new example a representative multilevel
model where exact inference is intractable, a Poisson model
for estimating failure rates of power plant pumps (George
et al., 1993). Given N power plant pumps, each having
operated for t

n

thousands of hours, we see x

n

failures, fol-
lowing

↵ ⇠ Exponential(1.0), � ⇠ Gamma(0.1, 1.0),

✓

n

⇠ Gamma(↵,�), y

n

⇠ Poisson(✓

n

t

n

).

The graphical model, an inverse factorization, and the neural
network structure are shown in Figure 2. To generating syn-
thetic training data, t

n

are sampled iid from an exponential
distribution with mean 50.

The repeated structure in the inverse factorization of this
model allows us to learn a single inverse factor to represent
the distribution p̃(✓

n

|t
n

, y

n

) across all n. This yields a far
simpler learning problem than were we forced to fit all of
p̃(✓1:N |t1:N , y1:N) jointly. Further, the repeated structure

allows us to use a divide-and-conquer SMC algorithm (Lind-
sten et al., 2014) which works particularly efficiently on this
model. Each of the N replicated structures are sampled
in parallel with independent particle sets, weighted locally,
and resampled; once all ✓

n

are sampled, we end by sam-
pling ↵ and � jointly, which need both be included in order
to evaluate the final terms in the joint target density. We
stress that there is no obvious baseline proposal density to
use for a divide-and-conquer SMC algorithm, as neither the
marginal prior nor posterior distributions over ✓

n

are avail-
able in closed form. Any usage of this algorithm requires
manual specification of some proposal q(✓

n

).

We test our proposals on the actual power pump failure data
analyzed in George et al. (1993). The relative convergence
speeds of marginal likelihood estimators from importance
sampling from prior and neural network proposals, and
SMC with neural network proposals, are shown in Figure 5.
To capture the wide tails of the broad gamma distributions,
we use a mixture of 10 Gaussians here at each output node,
and 500 hidden units in each of two hidden layers.

Metropolis-Hastings

Non-conjugate polynomial regression

Inference Networks for Sequential Monte Carlo in Graphical Models

Figure 4. Representative output in the polynomial regression example. Plots show 100 samples each at 5% opacity, with the mean marked
as a solid dashed line. These are all proposed using the same pre-trained neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples by a factor 100, after 10000 samples of
burnin. The neural network proposal yields estimated polynomial curves close to the true posterior solution, albeit slightly more diffuse.

4.2. A hierarchical Bayesian model

Consider as a new example a representative multilevel
model where exact inference is intractable, a Poisson model
for estimating failure rates of power plant pumps (George
et al., 1993). Given N power plant pumps, each having
operated for t

n

thousands of hours, we see x

n

failures, fol-
lowing

↵ ⇠ Exponential(1.0), � ⇠ Gamma(0.1, 1.0),

✓

n

⇠ Gamma(↵,�), y

n

⇠ Poisson(✓

n

t

n

).

The graphical model, an inverse factorization, and the neural
network structure are shown in Figure 2. To generating syn-
thetic training data, t

n

are sampled iid from an exponential
distribution with mean 50.

The repeated structure in the inverse factorization of this
model allows us to learn a single inverse factor to represent
the distribution p̃(✓

n

|t
n

, y

n

) across all n. This yields a far
simpler learning problem than were we forced to fit all of
p̃(✓1:N |t1:N , y1:N) jointly. Further, the repeated structure

allows us to use a divide-and-conquer SMC algorithm (Lind-
sten et al., 2014) which works particularly efficiently on this
model. Each of the N replicated structures are sampled
in parallel with independent particle sets, weighted locally,
and resampled; once all ✓

n

are sampled, we end by sam-
pling ↵ and � jointly, which need both be included in order
to evaluate the final terms in the joint target density. We
stress that there is no obvious baseline proposal density to
use for a divide-and-conquer SMC algorithm, as neither the
marginal prior nor posterior distributions over ✓

n

are avail-
able in closed form. Any usage of this algorithm requires
manual specification of some proposal q(✓

n

).

We test our proposals on the actual power pump failure data
analyzed in George et al. (1993). The relative convergence
speeds of marginal likelihood estimators from importance
sampling from prior and neural network proposals, and
SMC with neural network proposals, are shown in Figure 5.
To capture the wide tails of the broad gamma distributions,
we use a mixture of 10 Gaussians here at each output node,
and 500 hidden units in each of two hidden layers.

After importance weighting

Inference Networks for Sequential Monte Carlo in Graphical Models

Figure 4. Representative output in the polynomial regression example. Plots show 100 samples each at 5% opacity, with the mean marked
as a solid dashed line. These are all proposed using the same pre-trained neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples by a factor 100, after 10000 samples of
burnin. The neural network proposal yields estimated polynomial curves close to the true posterior solution, albeit slightly more diffuse.

4.2. A hierarchical Bayesian model

Consider as a new example a representative multilevel
model where exact inference is intractable, a Poisson model
for estimating failure rates of power plant pumps (George
et al., 1993). Given N power plant pumps, each having
operated for t

n

thousands of hours, we see x

n

failures, fol-
lowing

↵ ⇠ Exponential(1.0), � ⇠ Gamma(0.1, 1.0),

✓

n

⇠ Gamma(↵,�), y

n

⇠ Poisson(✓

n

t

n

).

The graphical model, an inverse factorization, and the neural
network structure are shown in Figure 2. To generating syn-
thetic training data, t

n

are sampled iid from an exponential
distribution with mean 50.

The repeated structure in the inverse factorization of this
model allows us to learn a single inverse factor to represent
the distribution p̃(✓

n

|t
n

, y

n

) across all n. This yields a far
simpler learning problem than were we forced to fit all of
p̃(✓1:N |t1:N , y1:N) jointly. Further, the repeated structure

allows us to use a divide-and-conquer SMC algorithm (Lind-
sten et al., 2014) which works particularly efficiently on this
model. Each of the N replicated structures are sampled
in parallel with independent particle sets, weighted locally,
and resampled; once all ✓

n

are sampled, we end by sam-
pling ↵ and � jointly, which need both be included in order
to evaluate the final terms in the joint target density. We
stress that there is no obvious baseline proposal density to
use for a divide-and-conquer SMC algorithm, as neither the
marginal prior nor posterior distributions over ✓

n

are avail-
able in closed form. Any usage of this algorithm requires
manual specification of some proposal q(✓

n

).

We test our proposals on the actual power pump failure data
analyzed in George et al. (1993). The relative convergence
speeds of marginal likelihood estimators from importance
sampling from prior and neural network proposals, and
SMC with neural network proposals, are shown in Figure 5.
To capture the wide tails of the broad gamma distributions,
we use a mixture of 10 Gaussians here at each output node,
and 500 hidden units in each of two hidden layers.

Metropolis-Hastings

Non-conjugate polynomial regression

Figure 1: Representative output in the polynomial regression example. Plots show 100
samples each at 5% opacity, with the mean marked as a solid dashed line. These are all
proposed using the same neural network — not just the same neural network structure, but
also identical learned weights. The MCMC posterior is generated by thinning 10000 samples
by a factor 100, after 10000 samples of burnin. The neural network proposal density for the
weights yields estimated polynomial curves very close to the true posterior solution, albeit
slightly more di↵use. Any small mismatch is easily corrected via importance reweighing.

structure are shown in Figure 2. Here we place a Laplace prior on the regression weights,
and have Student-t likelihoods, giving us

w

d

⇠ Laplace(0, 101�d) for d = 0, 1, 2;

t

n

⇠ t
⌫

(w0 + w1zn + w2z
2
n

, ✏

2) for n = 1, . . . , N

for fixed ⌫ = 4, ✏ = 1, and we place a uniform prior on (�10, 10) for z

n

. The goal is to
estimate the posterior distribution of weights for the constant, linear, and quadratic terms,
given any possible collected dataset {z

n

, t

n

}N
n=1. In the notation of the surrounding sections,

we have latent variables x ⌘ {w0, w1, w2} and observed variables y ⌘ {z
n

, t

n

}N
n=1.

8

Bigger models:  

Exploiting structure

Factorization of inverse models

(1) There is an algorithm [Stuhlmüller et al., 2013]
which takes a model and constructs an inverse
model, in which the observed nodes come first.  
 

(2) Property: this inverse model does not introduce
any additional conditional independencies.  
 
That is, if two random variables are independent
given a third in the inverse model, this was also
true in the original generative model.

tn

zn
w0

w1

w2 N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input

directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

Hierarchical Bayesian models: use sequential Monte Carlo

tn

zn
w0

w1

w2 N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input

directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

Generative model Inverse model

tn

zn
w0

w1

w2 N

tn

zn

w0

w1

w2
N

tn

zn

w0

w1

w2

'w

N

Figure 1: a non-conjugate regression model, as (left) a Bayes net representing a generative
model for the data {tn}; (middle) with dependency structure inverted, a generative model
for the latent variables w0, w1, w2; (right) showing the explicit neural network structure of
the inverse conditional distribution p̃(w0:2|z1:N , t1:N). Here we place a Laplace prior on each
regression weight wd, and have Student-t likelihoods p(tn|zn, w0:2). New datasets {zn, tn}Nn=1
can be input directly into the joint density estimator 'w to estimate the posterior.

2 Approach

A directed graphical model, or Bayesian network [10, 12], defines a joint probability distri-
bution and conditional independence structure via a directed acyclic graph. For each xi in
a set of random variables x1, . . . , xN , the network structure specifies a conditional density
pi(xi|pa(xi)), where pa(xi) denotes the parent nodes of xi. The joint distribution over N

latent random variables x and M observed random variables y is defined as

p(x,y) ,
NY

i=1

p (xi|pa(xi))
MY

j=1

p (yj |pa(yj)) ; (1)

the inference goal is to characterize the posterior distribution ⇡(x) ⌘ p(x|y).
Our approach is two-fold. First, given a Bayesian network that acts as a generative model for
our observed data y given latent variables x, we construct a new Bayesian network which acts
as a generative model for our latent x, given observed data y. This network is constructed
such that the joint distribution defined by the original model p(x,y) = p(x)p(y|x) is identical
to that of the new “inverse model”, which we will refer to as p̃(x,y) = p̃(y)p̃(x|y), but with
a di↵erent factorization [13].

Unfortunately, unlike the original forward model, the inverse model has conditional densities
which we do not in general know how to normalize or sample from. However, were we to know
the conditional densities comprising the inverse model p̃(x|y), then given a particular dataset
y we could directly draw posterior samples simply by ancestral sampling from the inverse
graphical model. Thus the second aspect is learning approximations for the conditionals
p̃(xi|fpa(xi)), where fpa(xi) are parents of xi in the inverse model. To do so we employ
neural density estimators [1, 2, 7, 14], and design a procedure to train these “o✏ine”, in the
sense that no real data is required.

As an example, consider the non-conjugate polynomial regression model shown in Figure 1,
along with its inverse graphical model, and the resulting neural network structure. Note
particularly that although the original graphical model which expressed p(y|x)p(x) factorizes
into products over yn which are conditionally independent given x, in the inverse model
p̃(x|y)p̃(y) due to the explaining-away phenomenon all latent variables depend on all others.

2.1 Learning a family of importance sampling densities

Simple importance sampling in a Bayesian network performs inference by sampling x from
some proposal density q(x|·), and computing importance weights w(x) = p(x,y)/q(x|·)
which, for K samples of x, yields a posterior approximation

p̂(x|y) =
KX

k=1

Wk�xk(x) Wk =
w(xk)PK
j=1 w(xj)

w(x) =
p(x,y)

q(x|�) (2)

The e�ciency of the method depends crucially on the choice of proposal density. Previous
work in adaptive importance sampling in a single-dataset setting (i.e., with fixed y), both

2

Single multivariate proposal

Factorization of inverse models

Inverting a multilevel model

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input

directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

yn

✓n

tn

↵

�

N

yn

✓n
tn

↵

�
N

yn
'✓n ✓n

tn

'↵�

↵

�
N

Figure 3. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)

showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across

the latent variables. The learned factor '✓n is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

y1

✓1
t1

↵

�

yN

✓N
tN

↵

�

Figure 4. buildout

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input

directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

yn

✓n

tn

↵

�

N

yn

✓n
tn

↵

�
N

yn
'✓n ✓n

tn

'↵�

↵

�
N

Figure 3. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)

showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across

the latent variables. The learned factor '✓n is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

y1

✓1
t1

↵

�

yN

✓N
tN

↵

�

Figure 4. buildout

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input

directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

yn

✓n

tn

↵

�

N

yn

✓n
tn

↵

�
N

yn
'✓n ✓n

tn

'↵�

↵

�
N

Figure 3. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)

showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across

the latent variables. The learned factor '✓n is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

y1

✓1
t1

↵

�

yN

✓N
tN

↵

�

Figure 4. buildout

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input

directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

yn

✓n

tn

↵

�

N

yn

✓n
tn

↵

�
N

yn
'✓n ✓n

tn

'↵�

↵

�
N

Figure 3. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)

showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across

the latent variables. The learned factor '✓n is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

y1

✓1
t1

↵

�

yN

✓N
tN

↵

�

Figure 4. buildout

… …

Generative model Inverse model

Inverting a multilevel model

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input

directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

yn

✓n

tn

↵

�

N

yn

✓n
tn

↵

�
N

yn
'✓n ✓n

tn

'↵�

↵

�
N

Figure 3. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)

showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across

the latent variables. The learned factor '✓n is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

y1

✓1
t1

↵

�

yN

✓N
tN

↵

�

Figure 4. buildout

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input

directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

yn

✓n

tn

↵

�

N

yn

✓n
tn

↵

�
N

yn
'✓n ✓n

tn

'↵�

↵

�
N

Figure 3. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)

showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across

the latent variables. The learned factor '✓n is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

y1

✓1
t1

↵

�

yN

✓N
tN

↵

�

Figure 4. buildout

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input

directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

yn

✓n

tn

↵

�

N

yn

✓n
tn

↵

�
N

yn
'✓n ✓n

tn

'↵�

↵

�
N

Figure 3. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)

showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across

the latent variables. The learned factor '✓n is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

y1

✓1
t1

↵

�

yN

✓N
tN

↵

�

Figure 4. buildout

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input

directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

yn

✓n

tn

↵

�

N

yn

✓n
tn

↵

�
N

yn
'✓n ✓n

tn

'↵�

↵

�
N

Figure 3. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)

showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across

the latent variables. The learned factor '✓n is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

y1

✓1
t1

↵

�

yN

✓N
tN

↵

�

Figure 4. buildout

… …

Partial model can be evaluated
before simulating all random

variables

Generative model Inverse model

p(y1|✓1, t1)

q(✓1|y1, t1)

Inverting a multilevel model

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input

directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

yn

✓n

tn

↵

�

N

yn

✓n
tn

↵

�
N

yn
'✓n ✓n

tn

'↵�

↵

�
N

Figure 3. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)

showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across

the latent variables. The learned factor '✓n is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

y1

✓1
t1

↵

�

yN

✓N
tN

↵

�

Figure 4. buildout

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input

directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

yn

✓n

tn

↵

�

N

yn

✓n
tn

↵

�
N

yn
'✓n ✓n

tn

'↵�

↵

�
N

Figure 3. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)

showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across

the latent variables. The learned factor '✓n is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

y1

✓1
t1

↵

�

yN

✓N
tN

↵

�

Figure 4. buildout

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input

directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

yn

✓n

tn

↵

�

N

yn

✓n
tn

↵

�
N

yn
'✓n ✓n

tn

'↵�

↵

�
N

Figure 3. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)

showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across

the latent variables. The learned factor '✓n is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

y1

✓1
t1

↵

�

yN

✓N
tN

↵

�

Figure 4. buildout

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input

directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

yn

✓n

tn

↵

�

N

yn

✓n
tn

↵

�
N

yn
'✓n ✓n

tn

'↵�

↵

�
N

Figure 3. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)

showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across

the latent variables. The learned factor '✓n is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

y1

✓1
t1

↵

�

yN

✓N
tN

↵

�

Figure 4. buildout

… …

Local random variables can
be evaluated independently,

and share learned factors

Generative model Inverse model

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input

directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

yn

✓n

tn

↵

�

N

yn

✓n
tn

↵

�
N

yn
'✓n ✓n

tn

'↵�

↵

�
N

Figure 3. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)

showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across

the latent variables. The learned factor '✓n is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

y1

✓1
t1

↵

�

yN

✓N
tN

↵

�

Figure 4. buildout

Inverting a multilevel model

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input

directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

yn

✓n

tn

↵

�

N

yn

✓n
tn

↵

�
N

yn
'✓n ✓n

tn

'↵�

↵

�
N

Figure 3. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)

showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across

the latent variables. The learned factor '✓n is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

y1

✓1
t1

↵

�

yN

✓N
tN

↵

�

Figure 4. buildout

Generative model Inverse model

Inverting a multilevel model

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2

'w

N

Figure 1. A non-conjugate regression model, as (left) a Bayes net representing a generative model for the data {tn}; (middle) with

dependency structure inverted, as a generative model for the latent variables w0, w1, w2; (right) showing the explicit neural network

structure of the learned approximation to the inverse conditional distribution p̃(w0:2|z1:N , t1:N). New datasets {zn, tn}Nn=1 can be input

directly into the joint density estimator 'w to estimate the posterior. Note that the ordering of the latent variables w0:2 used in this

example is chosen arbitrarily; any permutation of the latent variables would not change the overall structure of the inverse model.

tn
N

tn

zn

N

tn

zn

N

tn

zn
w0

N

tn

zn
w0

N

tn

zn
w0

w1

N

tn

zn
w0

w1

N

tn

zn
w0

w1

w2
N

tn

zn
w0

w1

w2
N

Figure 2. buildout

yn

✓n

tn

↵

�

N

yn

✓n
tn

↵

�
N

yn
'✓n ✓n

tn

'↵�

↵

�
N

Figure 3. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)

showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across

the latent variables. The learned factor '✓n is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

y1

✓1
t1

↵

�

yN

✓N
tN

↵

�

Figure 4. buildout

reusable
approximation

lower-dimensional
approximation

Generative model Inverse model

Inference Networks for Sequential Monte Carlo in Graphical Models

y

n

✓

n

t

n

↵

�

N

y

n

✓

n

t

n

↵

�

N

y

n

'

✓n ✓

n

t

n

'

↵�

↵

�

N

Figure 2. A hierarchical Bayesian model. (left) A generative model for the data {xn}; (middle) with dependency structure inverted; (right)
showing the two distinct joint neural conditional density estimators. Note in particular the inverse model still partially factorizes across
the latent variables. The learned factor '✓n is replicated N times in the inverse model, allowing re-use of weights, simplifying training.

In an amortized inference setting, instead of learning � ex-
plicitly for a fixed value of y, we learn a mapping from y

to �. More explicitly, if y 2 Y and � 2 #, then learning a
deterministic mapping ' : Y ! # allows performing ap-
proximate inference for p(x|y) with only the computational
complexity of evaluating the function '. The tradeoff is that
the training of ' itself may be quite involved.

We thus generalize the adaptive importance sampling algo-
rithms by learning a family of distributions q(x|y), parame-
terized by the observed data y. Suppose that � = '(⌘,y),
where the function ' is parameterized by a set of upper-level
parameters ⌘. We would like a choice of ⌘ which performs
well across all datasets y. We can frame this as minimizing
the expected value of Eq. (10) under p(y), suggesting an
objective function J (⌘) defined as

J (⌘) =

Z
D

KL

(⇡||q
�

)p(y)dy

=

Z
p(y)

Z
p(x|y) log


p(x|y)

q(x|'(⌘,y))

�
dxdy

= E
p(x,y) [� log q(x|'(⌘,y))] + const (11)

which has a gradient

r
⌘

J (⌘) = E
p(x,y) [�r

⌘

log q(x|'(⌘,y))] . (12)

Notice that these expectations in Equations (11) and (12)
are with respect to the tractable joint distribution p(x,y).
We can thus fit ⌘ by stochastic gradient descent, estimating
the expectation of the gradient r

⌘

J (⌘) by sampling syn-
thetic full-data training examples {x,y} from the original
model. This procedure can be performed entirely offline —
we require only to be able to sample from the joint distribu-
tion p(x,y) to generate candidate data points (effectively
providing infinite training data). In any directed graphical
model this can be achieved by ancestral sampling, where
in addition to sampling x we sample values of the as-yet
unobserved variables y. Furthermore, we do not need need
to be able to compute gradients of our model p(x,y) it-
self — we only need the gradients of our recognition model
q(x|'(⌘,y)), allowing use of any differentiable representa-
tion for q. We choose the parametric family q(x|�) and the
transformation ' such that this inner gradient in Eq. (12)
can be computed easily.

We can now use the conditional independence structure in
our inverse model p̃(x,y) to break down q(x|�), an approx-
imation of p̃(x|y), into a product of smaller conditional
densities each approximating p̃(x

i

|fPA(x
i

)). The full pro-
posal density q(x|'(⌘,y)) can be decomposed as

q(x|'(⌘,y)) =
NY

i=1

q

i

(x

i

|'
i

(⌘

i

,

fPA(x
i

))) (13)

with the gradient similarly decomposing as

r
⌘iJ (⌘) = E

p(x,y)

⇥
�r

⌘i log qi(xi

|'
i

(⌘

i

,

fPA(x
i

)))

⇤
.

Each of these expectations requires only samples of the
random variables in {x

i

}[fPA(x
i

), reducing the dimension-
ality of the joint optimization problem. This factorization of
q(x|'(⌘,y)) does not practically reduce the expressivity of
the approximating family, as all conditional dependencies
in the true posterior are preserved.

3.3. Joint conditional neural density estimation

We particularly wish to construct the inverse factorization
p̃(x|y) (and our proposal model q(·)) in such a way that we
deal naturally with the presence of head-to-head nodes, in
which one random variable may have a very large parent set.
This situation is common in machine learning models: it is
quite common to have generative models which factorize in
the joint distribution, but have complex dependencies in the
posterior; see for example the model in Figure 1.

We thus choose to treat all such situations in our inverse fac-
torization — where a sequence of variables x0 ✓ x are fully
dependent on one another after conditioning on a shared
set of parent nodes fPA(x0

) — as a single joint conditional
density which we will approximate with an autoregressive
density model. We extend MADE (Germain et al., 2015) to
function as a conditional density estimator by allowing it to
take fPA(x0

) as additional inputs, and constructing the masks
such that these additional inputs are propagated through all
hidden layers to all outputs, even for the very first dimension.
As in MADE this can be achieved by labeling the hidden
units with integers denoting which input dimensions they
are allowed to accept. In contrast to the original MADE, we
label hidden units with numbers from 0, . . . , N � 1, where

Heirarchical Poisson model

Orders of magnitude fewer samples required

In sequential models

Factorial HMM!
(partial figure)

Inverting the
factorial HMM

For models which are actually sequential, then this
learns approximations to the optimal filtering proposal

In sequential models

Factorial HMM!
(partial figure)

Inverting the
factorial HMM

For models which are actually sequential, then this
learns approximations to the optimal filtering proposal

reusable
approximation

Additive Factorial HMM
Inference Networks for Sequential Monte Carlo in Graphical Models

Figure 5. Convergence of marginal likelihood estimate as a func-
tion of number of particles, for likelihood-weighted importance
sampling, neural network importance sampling, and a divide-and-
conquer sequential Monte Carlo algorithm with neural network
proposals. The SMC algorithm can achieve reasonable estimates
of the normalizing constant with as few as 5 samples. Plot shows
mean of 10 runs; error bars show two standard deviations.

4.3. Factorial hidden Markov model

Proposals can also be learned to approximate the optimal fil-
tering distribution in models for sequential data; we demon-
strate here on a factorial hidden Markov model (Ghahramani
and Jordan, 1997), where each time step has a combinatorial
latent space. The additive model we consider is inspired by
the model studied in Kolter and Jaakkola (2012) for disag-
gregation of household energy usage; effective inference in
this model is a subject of continued research. Some number
of devices D are either in an active state, in which case each
device i consumes µi units of energy, or it is off, in which
case it consumes no energy. At each time step we receive a
noisy observation of the total amount of energy consumed,
summed across all devices. This model, whose graphical
model structure is shown in Figure 3, can be represented as

x

i

t

|xi

t�1 ⇠ Bernoulli(✓

i

[x

i

t�1])

y

t

|x1
t

, . . . , x

D

t

⇠ N
�P

D

i=1 µ
i

x

i

t

,�

2
�
,

where ✓

i represents the prior probability of devices switch-
ing on or off at each time increment. We design a syn-
thetic example with D = 20, meaning each time step has
2

2
0 ⇡ 100, 000 possible discrete states; the parameters µd

are spread out from 30 to 500, with � = 10. Each individual
device has an initial probability 0.1 of being activated at
t = 1, switching state at subsequent t with probability 0.05.

As different combinations of devices can yield identical to-
tal energy usage it is impossible to disambiguate between
different combinations of active devices from a single ob-
servation, meaning any successful inference algorithm must
attempt to mix across many disconnected modes over time
to preserve the multiple possible explanations. Synthetic
data and example output of inference is shown in the supple-
mental material. The effect of the learned proposals on the
overall number of surviving particles is shown in Figure 6.
Our proposal model uses D Bernoulli outputs in a 4-layer
network, with 300 units per hidden layer; it takes as input

Figure 6. Learned proposals reduce particle degeneracy in the fac-
torial HMM. Here we show the number of unique ancestries which
survive over the course of 30 time steps, running 100 particles.
Proposing from the transition dynamics nearly immediately degen-
erates to a single possible solution; the learned proposals increase
the effective sample size at each stage and reduce the need for
resampling. Plot shows mean and standard deviation over 10 runs.

the D latent states at the previous time t � 1, as well as
the current observation y

t

. A separate network is used for
predicting the initial state x

i

1 given only the initial input y1.

5. Discussion

We present this work primarily as a manner by which we
compile away application-time inference costs when per-
forming SMC, and automating the manual task of designing
proposal densities. However, in some situations direct sam-
pling from the model may provide a satisfactory approxi-
mation even eschewing importance weighting steps; in such
cases our approach can be viewed as a graphical-model-
regularized algorithm for designing and training neural net-
works with interpretable structural representations. Rather
than learning from data, the emulator model is chosen to ap-
proximate the specified generative model, akin to the “sleep”
cycle of the wake-sleep algorithm (Hinton et al., 1995).

In contrast to variational autoencoders (Kingma and Welling,
2014), where one simultaneously learns parameters for both
the inference network and generative model from data, we
assume a known generative model with fixed parameters
and structured, interpretable latent variables. This provides
robustness to bias arising from training data which comes
from an unrepresentative sample, and also allows us to apply
our method in situations where a sufficiently large supply of
exemplar data is unavailable. However, it does require plac-
ing trust in the generative model: in particular, it requires a
generative model which could plausibly create the data we
will later collect and condition on.

Beyond these differences, our choice of D

KL

(⇡||q), the
same minimized by EP, leads to approximations more ap-
propriate for SMC refinement than a variational Bayes ob-
jective function; see e.g. Minka (2005) for a discussion of
“zero-forcing” behavior, and e.g. Cappé et al. (2008) for
a discussion of pathological cases in learned importance
sampling distributions.

Inference Networks for Sequential Monte Carlo in Graphical Models

A. Supplemental Material

A.1. Factorial hidden Markov model

An example inference result from the factorial hidden
Markov model is shown in Figure 7. The algorithm success-
fully recovers differing interpretations for the same recorded
energy usage data.

Figure 7. Scenario analysis for a synthetic additive factorial HMM
example, from a single SMC sweep with 500 particles. In all
plots, the horizontal axis denotes time in the state space. The
top plot shows the reconstructed signal y1:T , with two standard
deviations around the mean shown as a light-green band, and three
individual scenarios called out as individual lines. These scenarios
are shown in detail in the separate plots below: each row represents
the energy usage of a particular device, with darker colors showing
higher mean energy usage; white indicates the device is off. The
green lines in the top plot are recovered by summing vertically
across the rows of each individual scenario. The very different
recovered device activities x1:D

1:T yield output signals y1:T which
are indistinguishable up to noise.

A.2. Training the neural network

The training procedure for each epoch, using synthetic train-
ing and validation data, proceeds as follows:

1. Sample a synthetic dataset {x
`

,y

`

}Ntrain
`=1 and a vali-

dation set {x
`

,y

`

}Nvalidate
`=1

2. Compute initial validation error, and loop:

(a) Perform a mini-batch gradient update on ⌘, from
the synthetic dataset

(b) Compute a new validation error on the sampled
validation set

(c) Continue until validation error increases, or until
a set maximum number of steps is reached.

Example: energy usage  
disaggregation.  
 
Combinatorial space:  
2^20 or about 100k possible  
states at each timestep  
 
Many diverse plausible  
interpretations  

Discussion

We’d like to be able to completely automate this process!!
!
• Ideally: here’s a model, in some model specification

language (BUGS, STAN, Anglican, …). Can we
compile the model to an approximate inverse model?  

• Open problems: topological sort is not unique! What
makes a “good” inverse model?!

(1) structures the neural network so that training is
easier (fewer overall parameters)!

(2) structures the sequence of target densities for SMC
such that inference is easier

