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Inference thus far

* Likelihood weighting / importance sampling
« MCMC (single-dimension, coded by hand)

* “Lightweight” Metropolis-Hastings (update one
random choice at a time, by re-running the
remainder of the program)



Inference: this talk

How can we make inference more computationally
efficient?

* Sequential Monte Carlo uses importance sampling as
a building block for an inference algorithm that can
succeed iIn models with higher-dimensional latent
spaces

* Algorithms which extend SMC: Particle MCMC, and
asynchronous SMC

* \WWhat sort of proposal distributions should we be
simulating from in these methods”? Can we learn
importance sampling proposals automatically?



Inference in Anglican

(doquery :algorithm model [args] options)

 How do you implement an inference algorithm in
Anglican? (JW will show you this afternoon)

* [wo important special forms are the intertace
between model code and inference code:

(sample ...) (observe ...)

* Q: what kinds of inference algorithms can we
develop and implement using this interface”



INncremental evigdence

e |f we can write our
programs in such a way
that we see early,
iIncremental evidence
then we can use more
efficient inference
algorithms.

* |ntuition: sample
statements which come
after observe statements
can be informed by the
data

(defguery monolithic-observe []
. 33 many sample statments

(sample ...)
(sample ...)
(sample ...)

. 33 Single observe /
;5 conditioning statement
;3 at the end

(observe ...))

(defquery incremental-observe []
(loop ...
;5 lnterleaved sample and
;5 observe statements

(sample ...)
(observe ...)
(recur ...)))



Hidden Markov model




Hidden Markov model

Place a massive observe statement at the enad



Hidden Markov model
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Place a massive observe statement at the enad



Hidden Markov model

Place a massive observe statement at the enad



Hidden Markov model

O O

Place a massive observe statement at the enad



Hidden Markov model

No “feedback” until all random variables have been sampled

Y
()

Place a massive observe statement at the enad




Hidden Markov model

Place observe statements as early as possibly



Hidden Markov model

ORND

Place observe statements as early as possibly



Hidden Markov model

Does y: have high probability given xp and x;?

Place observe statements as early as possibly



Hidden Markov model

Does y- have high probability given xp, x1, and x2?

O

Place observe statements as early as possibly




Hidden Markov model

Y
()

Place observe statements as early as possibly




Hidden Markov model

Incremental evidence == computational efficiency?

Place observe statements as early as possibly




INncremental evigdence

* Many models and settings are naturally written
incrementally!

» Canonical example: time series models (observe at
discrete timesteps)

» Planning problems (observe at discrete timesteps)

» Models which factor into global and “local” (per-
datapoint) observes, such as mixture models and
many multilevel Bayesian models

» Models such as image synthesis, where the entire
‘canvas’ Is always visible and can be evaluated
according to a fitness function at any time



State-space models

* Running example:
inference In state-
space models

“space” (x)

 Observed data vy,
and latent state z,, :

* |Inference goals:
estimate latent state; “time” (n)
predict future data; N

eStImate rnarglnal p(mO:NayO:N) — H g(yn‘x():n)f(xn‘x():n—l)
iIkelihood n=0




K total particles

Sequential Monte Carlo

D)
[
—

e Basic idea: approximate the posterior
distribution using a weighted set of K

particles z.")

K

° p(xO:n|yO:n) ~ Zw}L:K5xé’?) ($O:n)



K total particles

Sequential Monte Carlo

D)
[
—

 Each particle is assigned an
(unnormalized) weight
based on its likelihood W

K

° p(xO:n‘yO:n) ~ Z w}L:Kéxg’?) (CEO:n)

o Wk oc WF

n



Seqguential Monte Carlo

 Each particle is assigned an
(unnormalized) weight
based on its likelihood W

K total particles




K total particles

Seqguential Monte Carlo

D)
[
—

¢

N =

e Particles are
resampled according
to their weights, then
simulated forward

 Each particle has zero
or more children

 Number of children M¥
IS proportional to the
weight W



K total particles

Seqguential Monte Carlo

N

N =

weight a
and part
weight a

e Particles with low

e discarded,
icles with high
‘e replicated

e Better-than-average
oarticles are replicated
more often

Wk

. EB[MP|WEK] = 2

W



Seqguential Monte Carlo

lteratively,

- simulate
- weight

- resample

K total particles




K total particles

Seqguential Monte Carlo

n=2

D)
[
—

| teratively,

: ®

i - simulate
I ' -

| - weight

' ‘ - resample




K total particles

Seqguential Monte Carlo




Sequential Monte Carlo

SMC in action: slowed down for clarity



Propabilistic programs
as state spaces?



Trace

Sequence of N observe’s
{(9i; bi> vi) Yy
Seqguence of M sample’s
{(f5,00) 175
Sequence of M sampled values

{z; }é\g

Conditioned on these sampled values the entire computation
IS deterministic



Trace Probability

* Defined as (up to a normalization constant)
N M

v(x) £ p(x,y) = | [gilwilos) | | fi(x;105)
i=1 j=1

* Hides true dependency structure

N M
V(x) =p(x,y) = H%(Xni) (yz éz(an)> H fj(Xj—l) <£Ii‘j éj(le))
i=1 j=1
i(i
- ji o X; =x1 X+ XTI
(eo(z(z)(=(7)~(9



Likelihood Weighting

 Run K independent copies of program simulating from
the prior

k :Mk (F19"
() = T £(}105)

* Accumulate unnormalized weights (likelihoods)

wiet) = 25 = [T ok utloh)

* Use in approximate (Monte Carlo) integration

w(x") . -
T wx) L [R(x)] = ) WHR(x")

k=1

Wk




Probabillistic programs as state spaces

~

e Notation >~<1:;7, = X1 X - X Xy

~ ~

X1 X2

. A

-~ etc

& - )

* |ncrementalized joint

N
/yn(il:n) — H g(yn‘iln)p(f{n‘}zln—l)

n=1

* [ncrementalized target

1

Tn (}N(l:n) — Z_/yn (il:n)



Particle Markov chain
Monte Carlo



Particle Markov Chain Monte Carlo

e [terable SMC

- PIMH : "particle
iIndependent Metropolis-

Hastings”

- PGIBBS : “iterated
conditional SMC”

SwWeep

- PGAS : “particle Gibbs

ancestral sampling®




PIMH Matn

 Each sweep of SMC can
compute

 PIMH Is MH that accepts entire
new particle sets w.p.

I
8 °
o —minl| 1. —=
PIMH ; Zo1

 And all particles can be used

SwWeep

S K

- 1 — —
BpnaR()] = 5 D0 > WHR(
s=1 k=1 \4




Asynchronous anytime
sequential Monte Carlo



Parallelization in SMC

 Forward simulation trivially parallelizes

* this is the sort of parallelization achieved through
(e.g.) parfor in MATLAB, or pmap in functional
programming languages

* The resampling step (normalizing weights, sampling
child counts) is a global synchronous operation

e cannot resample until all particles finish simulation



Particle Cascade

* Replace resampling step with branching step
* Launch particles asynchronously
* As each particle arrives at an observation, choose

a number of offspring based only on the particles
which have arrived so tar

e ... dont need to wait for all particles to arrive

e ... 0only need to track average weights at each
observation, which we compute online



Particle Cascade

e Start by simulating particles,
one at a time, from f(x,|T1.0—1)

« Weight by likelihood ¢(y,|z1.n)




Particle Cascade

e Start by simulating particles,
one at a time, from f(x,|T1.0—1)

« Weight by likelihood ¢(y,|z1.n)




Particle Cascade

=2 e Keep track of the running

average weight W at
each n, based only on
first k particles to arrive

e Choose number of
offspring immediately,

| Nno need to wait for other
particles
‘ Wk

: o E[Mp (W] =

W

n



Particle Cascade

= D :
; e Launch new particles

while other particles
continue moving forward
through the system

@
N

* Jotal size of particle
system may vary over
course of execution




Particle Cascade

* Particles do not have
identical weight after
resampling

* [he "outgoing” weight
IS set to the current .
running average W,



Particle Cascade

Asynchronously

- sSimulate
-weight
- branch




Particle Cascade

Asynchronously
simulate




Particle Cascade




Particle Cascade



Particle Cascade



Particle Cascade




Particle Cascade




Particle Cascade




Particle Cascade
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Particle Cascade




Particle Cascade



Scalability: Particle Count

B Cascade
B iICSMC
B PIMH
N SMC

0 0 0 0

e Comparison across particle-based inference
approaches: raw speed of drawing samples

 Each particle runs as a separate CPU process



Scalability: Multiple Cores

w 40 | I I
& 35 | B Particle Cascade_
— B No Resampling
%_ 30 - BN terated CSMC |
- 25 - mm SMC ~
® 20+ _
’g, 15 _
O 10 -
E sf i
=0
2 4 8 16 32
# of cores
* More cores == faster inference

e Scales to multiple cores more etticiently than other
particle-based methods



Particle cascade summary

* Particle cascade is an asynchronous anytime drop-in
replacement for SMC, with the added benefits of

e ... an anytime property similar to MCMC methods;
keep running inference indefinitely, stop when
satisfied with the current estimate

e ... ho barrier synchronizations, yielding increased
particle throughput and parallel scalability as
compared to traditional SMC



Inference networks for
sequential Monte Carlo



Executive Summary

We want to make model-based Bayesian
inference efficient.

* In general: what artifacts can we learn offline to
compile away the runtime costs of inference?

» Qutside of specific (probably wrong) models, inference
Is fundamentally not a feed-forward computation!

- Sequential Monte Carlo for graphical models:
approximate optimal importance sampling proposals



Inference in Graphical Models

Goal: posterior inference in generative models with
latent variables x and observed variables y:

X,y) = HP(MPA(%)) Hp(yj\PA(yj))

Importance sampling and SMC approximate the
posterior 7(x) = p(x|y) as weighted samples:

w(Xp )
p(x Widx, (X w(x) = Wi = —%
V)= Z ‘“ ) S w(x;)

Performance depends on quality of proposal g(x|\)!



Inference Networks for Graphical Models

(e P
o) e 9w

A probabilistic model An inverse model Can we learn how to sample
generates data generates latents from the inverse model?

Learning an importance sampling proposal for a single dataset

Target density 7(x) = p(x|y), approximating family g(x|\)

: : - fit A to learn an importance
Single dataset y: arginm Drr(m||gx) sampling proposa



Inference Networks for Graphical Models

(e P
o) e 9w

A probabilistic model An inverse model Can we learn how to sample
generates data generates latents from the inverse model?

|dea: amortize inference by learning a map from data to target
Target density m(x) = p(x|y), approximating family g(x|\)

Averagi_ng over learn a mapping from
all possible datasets: A\ = ¢(n,y) arbitrary datasets to A

argmin [,y [DKL (7[ldg(n,y) )}
n



Compiling away runtime costs of inference

Learn to invert the generative model, before seeing data

Averaging over
all possible datasets: A = ¢(n,y)

argmin E,,y) | Dk (7] |¢u(.y))]
y

expectation over any data
we might observe



Compiling away runtime costs of inference

Learn to invert the generative model, before seeing data

Averaging over
all possible datasets: \ = ¢(n,y)

argmin [,y [DKL (7l (n,y) )}
1

New objective function,
upper-level parameters: / Dkr(7llgx)p

= [0 [ plxly) o { (“X‘” } dxdy

x| (n,y))
— ]Ep(x,y) [_ 1Og Q(X’SO(% y))] + const.

expectation over (tractable)
joint distribution



Compiling away runtime costs of inference

Learn to invert the generative model, before seeing data

Averaging over
all possible datasets: \ = ¢(n,y)

argmin [,y [DKL (7l (n,y) )}
1

New objective function,
upper-level parameters: J (7 /DKL(WHCL\ y)dy

= o050 s

— IE‘:"p(x,y) [_ log Q(X‘Sﬁ(% Y))] + const.

approximate with samples

Tractable gradient! from the joint distribution
Can train entirely offline: V,J(n) = Epx.y) [—Vylogq(x|o(n,y))]




Choice of approximating family

Expected KL divergence: J(n) = E, [DKL(7T Hqgo(n,y))]

Gradient: V,7(n) =E,x.y) [—Vylogq(x|e(n,y))]

| | ....and any
approximate with differentiable
samples from model function

choose a known
parametric family...



Choice of approximating family

Expected KL divergence: J(n) = E, [DKL(7T Hqgo(n,y))]

Gradient: V, 7 (n) = Epx.y) [—Vylogq(x[e(n,y))]

Univariate x: mixture density network

Multivariate X: autoregressive neural density estimator
* Neural network outputs parameters of a parametric model for the
next dimension, conditioned on previous dimensions
* e.g. mixture of Gaussians, categorical, ...

* MADE: efficient weight sharing for multivariate densities



Non-conjugate polynomial regression

Prior |

Samples from prior



Non-conjugate polynomial regression

Prior [ . - - - MH posterior [

Samples from prior Metropolis-Hastings



Non-conjugate polynomial regression

- == NN proposal [ . - - - MH posterior [

I | I I | | | I
/

~~-
=

Samples from proposal Metropolis-Hastings



Non-conjugate polynomial regression

- = = NN-IS posterior 7 - == MH posterior [

| | I I | I |
_ 4
[
\
\

After importance weighting Metropolis-Hastings



Non-conjugate polynomial regression
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Bigger models:

Exploiting structure



Factorization of inverse models

(1) There is an algorithm [Stuhimuller et al., 2013]
which takes a model and constructs an inverse
model, in which the observed nodes come first.

(2) Property: this inverse model does not introduce
any additional conditional independencies.

That is, If two random variables are independent
given a third in the inverse model, this was also
true in the original generative model.



Factorization of inverse models

Generative model Inverse model

ol
210
@&

¥

2P0
E—®

Single multivariate proposal




Inverting a multilevel model

Generative model Inverse model
&0
@ \ () \
,@/@ “t’@
\ N A@
i
(i)




Inverting a multilevel model

Generative model Inverse model
@ Partial model can be evaluated
@ before simulating all random
p(y1|64,t1) G N\ variables

(g
o),
| @/@

N




Inverting a multilevel model

Generative model Inverse model

| ocal random variables can

@ @ be evaluated independently,
() N

and share learned factors
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Inverting a multilevel model

Generative model Inverse model
@\A —v e
e ® o
L N L N




Inverting a multilevel model

Generative model Inverse model

reusable
approximation

lower-dimensional
approximation

4 N 4 N\
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Heirarchical Poisson model

Orders of magnitude fewer samples required

O ] ] ]
ay 100 - .
— 10 —o— NN-SMC |
-200 - —o— NN-IS i
IS (Prior)
-250 — —— E— -—
10’ 102 10° 10*

Number of samples



In sequential models

For models which are actually sequential, then this
learns approximations to the optimal ftiltering proposal

Factorial HMM Inverting the
(partial figure) factorial HMM



In sequential models

For models which are actually sequential, then this
learns approximations to the optimal ftiltering proposal
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Factorial HMM
(partial figure) factorial HMM

Inverting the



Additive Factorial HMM

—— Bootstrap SMC
—— NN-SMC

Surviving paths
S

-
o
o

5 10 15 20 25 30
Time step

Example: energy usage i S
disaggregation. e

Combinatorial space: ____
2720 or about 100k possible i - E—
states at each timestep G ——— —

@%l—_ = -
Many diverse plausible o e —
interpretations e .



We’d like to be able to completely automate this process!

- |deally: here’s a model, in some model specification
language (BUGS, STAN, Anglican, ...). Can we
compile the model to an approximate inverse model?

» Open problems: topological sort is not unique! What
makes a “good” inverse model?

(1) structures the neural network so that training is
easier (fewer overall parameters)

(2) structures the sequence of target densities for SMC
such that inference is easier



